期刊文献+

基于二阶统计量的两步自适应盲分离算法 被引量:1

Adaptive Blind Source Separation Algorithm by Second-Order Statistics
下载PDF
导出
摘要 提出了一种新的两步自适应盲分离算法,利用代价函数的极值点特性分别获得混合信号和白化信号的特征向量矩阵,实现自适应盲分离过程.该算法避免了离线计算所采用的特征值分解等复杂运算,并且只利用信号的二阶统计量信息,计算工作量低.仿真结果表明,对含有附加噪声的盲混合信号具有良好的分离效果. A new two-steps adaptive blind source separation algorithm was presented. The eigenvector matrices of the mixed signals and the whitened signals were obtained by using the stationary point property of a special cost function. The algorithm avoids the singular decomposition that commonly used in off-line calculation, and only the second order statistics of the signals is used, so the algorithm has low computing cost. The simulations show that the algorithm can get good separation performance to the blind mixed signals with additive noises.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第3期341-345,共5页 Journal of Shanghai Jiaotong University
基金 国家高技术研究发展计划(863)项目(2001AA422420-02)
关键词 盲分离 白化处理 代价函数 正交变换 Computer simulation Cost benefit analysis Matrix algebra Signal processing
  • 相关文献

参考文献8

  • 1Belouchrani A, Abed-Meraim K, Cardoso J F, et al.A blind source separation techique using second order statistics [J]. IEEE Transactions on Signal Processing, 1997, 45:434-444.
  • 2Cardoso J F. Blind signal separation: statistical principles [A]. Proceedings of the IEEE [C]. [s. l. ]:IEEE, 1998. 86:2009-2025.
  • 3Hyvarinen A, Oja E. Independent component analysis: algorithms and applications [ J ]. Neural Networks, 2000, 13:411-430.
  • 4Erdogmus D, Rao Y N, Principe J C, et al. Simultaneous extraction of principal components using givens rotations and output variances [A]. IEEE International Conference on Acoustics, Speech, and Signal Processing [C]. Orlando, FL USA:IEEE, 2002, 1:I-1069-I-1072.
  • 5Tong L, Liu R W, Soon V C, et al. Indeterminacy and identifiability of blind identification [J]. IEEE Transactions on Circuits and System. 1991, 38:499-509.
  • 6Seungjin C, Cichocki A, Belouchrani A. Blind separation of second-order nonstationary and temporally colored sources [A]. Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing [C]. Singapore: IEEE, 2001. 444-447.
  • 7Shindo H, Hirai Y. Blind source separation by a geometrical method [A]. Proceedings of the 2002 International Joint Conference on Neural Networks [C].Honolulu, HI USA: [s. n. ], 2002, 2:1109-1114.
  • 8Douglas S C. Prewhitened blind source separation with orthogonality constraints [ A ]. Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems and Computers [C]. Pacific Grove,CA USA:[s.n. ], 1999, 2:1027-1031.

同被引文献5

  • 1杨行峻 郑君里.人工神经网络与盲信号处理[M].北京:清华大学出版社,2002..
  • 2Choi S, Chichocki A, Belouchrani A. Second order nonstationary source separation[J]. Journal of VLSI Signal Proeessing,2002(32) : 93 -104.
  • 3Choi S,Chichocki A.Equivariant nonstationary source separation[J].Neural Networks,2002,15(1):121-130.
  • 4Seungjin C, Cichocki A, Belouchrani A. Blind separation of second order nonstationary and temporally colored sources [ C ]// Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing. Singapore: IEEE,2001:444-447.
  • 5Belouchrani A,Abed-Meraim K,Cardoso J F,et al. A blind source separation technique using second order statistics [J]. IEEE Transactions on Signal Processing, 1997 (45) :434-444.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部