摘要
根据Lyapunov稳定性理论,研究了由序列分数阶线性定常微分方程描述的控制系统的渐近稳定性,给出了分数阶系统稳定性定义,并利用两参数的Mittag-Leffler函数相关定理直接推导出稳定性结论.仿真实例和结果证实了相应的稳定性结论.
In terms of Lyapunov's stability theory the asymptotic stability of a class of control systems described by the linear fractional differential equations with sequential derivatives was studied. The stability conclusion is derived by using the theorems of the Mittag-Leffler function in two parameters. The simulation examples and results prove the stability conclusion.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2005年第3期346-348,352,共4页
Journal of Shanghai Jiaotong University
基金
上海市科技发展基金资助项目(011607033)
关键词
控制系统
分数阶微积分
分数阶系统
序列微分
渐近稳定性
control systems
fractional-order calculus
fractional-order system
sequential derivatives
asymptotic stability