期刊文献+

序列分数阶系统的渐近稳定性 被引量:4

The Asymptotic Stability on Sequential Fractional-Order Systems
下载PDF
导出
摘要 根据Lyapunov稳定性理论,研究了由序列分数阶线性定常微分方程描述的控制系统的渐近稳定性,给出了分数阶系统稳定性定义,并利用两参数的Mittag-Leffler函数相关定理直接推导出稳定性结论.仿真实例和结果证实了相应的稳定性结论. In terms of Lyapunov's stability theory the asymptotic stability of a class of control systems described by the linear fractional differential equations with sequential derivatives was studied. The stability conclusion is derived by using the theorems of the Mittag-Leffler function in two parameters. The simulation examples and results prove the stability conclusion.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第3期346-348,352,共4页 Journal of Shanghai Jiaotong University
基金 上海市科技发展基金资助项目(011607033)
关键词 控制系统 分数阶微积分 分数阶系统 序列微分 渐近稳定性 control systems fractional-order calculus fractional-order system sequential derivatives asymptotic stability
  • 相关文献

参考文献7

  • 1Torvik P J, Bagley R L. On the appearance of the fractional derivative in the behavior of real materials [J]. Transactions of the ASME , 1984, 51: 294-298.
  • 2Oldham K B, Spanier J. The fractional calculus [M]. New York: Academic Press, 1974.
  • 3Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations [M].New York: Wiley, 1993.
  • 4Machado J A T. Analysis and design of fractionalorder digital control systems [J]. Journal of SAMS,1997, 27: 107-122.
  • 5Podlubny I. Fractional-order systems and PIλDμ Controllers [J ]. IEEE Transactions on Automatic Control, 1999, 44(1): 208-214.
  • 6Podlubny I. Fractional differential equations [M].San Diego: Academic Press, 1999.
  • 7Caputo M. Elasticiae dissipazion [M ]. Bologna:Zanichelli, 1969.

同被引文献32

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部