期刊文献+

关于爱因斯坦流形的一些注记 被引量:1

SOME NOTES OF EINSTEIN MANIFOLD
下载PDF
导出
摘要 爱因斯坦流形是特殊的一种黎曼流形,它有很好的特征,其定义弱于常曲率黎曼流形.本文对其有关性质进行了讨论,得到了2维和n(n≥3)维爱因斯坦流形的数曲率的一些结果:ρ可能为常数和ρ为常数,以及爱因斯坦流形与常曲率黎曼流形之间的关系;3维连通的爱因斯坦流形(M,g)必为常曲率黎曼流形,它的截面曲率的几个结论;最后得到了一个关于其上非零的平行向量场的存在性定理,并且对爱因斯坦流形作了几点总结. Einstein manifold is a particular kind of Riemannian Manifold, it has good characters, its definition is weaker than Riemannian Manifold with constant sectional curvature. In this paper some properties about it are discussed. We get some results about the scalar curvature of 2 and n(n≥3)dimensions Einstein manifold: ρ Maybe is constant and ρ is constant, the relation between Einstein Manifold and Riemannian Manifold with constant sectional curvature: if Einstein Manifold (M, g) is connected, dimM=3, then it is Riemannian Manifold with constant sectional curvature. A few consequences of its sectional curvature. At last there is a existence theorem of nonzero parallel vector field, moreover several conclusions are given.
作者 胡冰 储昭昉
出处 《安徽师范大学学报(自然科学版)》 CAS 2005年第1期18-21,共4页 Journal of Anhui Normal University(Natural Science)
基金 安徽省教育厅自然科学基金(99j10069).
关键词 黎曼流形 爱因斯坦 截面曲率 注记 存在性定理 常数 平行向量 结论 特征 性质 sectional curvature parallel ricci curvature
  • 相关文献

参考文献5

  • 1孙国汉.微分几何[M].杭州:浙江教育出版社,1987..
  • 2Spivak.A comprehensive introduction to differential geometry Ⅳ[M].Berkeley:Publish to perish InC,1979.
  • 3Eells J,lemaire L.Seleced topics in harmonic maps[M].CBMS 50 AMS,1993.
  • 4Cheng Q M.Complete space-like submanifolds in a de sitter space with parallel mean curvature[J].Math Z,1991,206:333-339.
  • 5Chem S S, Carmo D M, Kobayashi S. Minimal Submanifols of a sphere with second fundmental form of constant legth[J].New York:Function Analysis and Related, Springer-verlag Berlm, Heidelberg,1970:59-75.

同被引文献4

  • 1WANG C P. Mobius geometry of submanifolds in S^n [J]. Manuscripta Math, 1998,96:517- 534.
  • 2HU Z J, LI H Z. Submanifolds with constant Mobius scalar curvature in S^n [J]. Manuscripta Math, 2003,111:287 -302.
  • 3WALCY, SANTOS. Submanifolds with parallel mean curvature vector in spheres[J]. Tohoku Math, 1994,46:403 -415.
  • 4LI A M, LI J M. An intrinsic rigidity theorem for minimal submanifolds in a sphere[J]. Arch Math, 1992,58:582 - 594.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部