期刊文献+

两全同二能级原子同时与真空腔场相互作用任意态的纠缠

Entanglement of an arbitrary state of the two identical two-level atoms simultaneously interacting with vacuum cavity field
原文传递
导出
摘要 应用负值量子条件熵,研究了在大失谐情况下,两全同二能级原子同时与一真空腔场相互作用任意态纠缠的时间演化.考察了统初态对两原子系之间量子纠缠的影响,并将结果与concurrence的时间演化作了比较.结果表明,负值条件熵能够作为该条件下两全同二能级原子同时与单模腔场相互作用任意态的,容易解析计算的纠缠度.图2,参12. It's investigated that the entanglement of an arbitrary state between the two identical two-level atoms simultaneously interacting with vacuum cavity field by using negative quantum condition entropy.It's discussed that the influence of the initial states of system considered on the evolution of entanglement between the two atoms and compare the results of condition entropy of entanglement with those of entanglement between the two-atoms based on the concurrence.The results show that the negative quantum conditional entropy can be regarded as a entanglement measure of an arbitrary states of the two identical two-level atoms with simple calculated analytically.2figs.,12refs.
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2005年第1期91-94,共4页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 湖南省教育厅 资助项目 03C543
关键词 二能级原子 真空腔场 量子纠缠态 entanglement two atoms system quantum condition entropy pure states mixed states
  • 相关文献

参考文献12

  • 1EKERT A K. Quantum Cryptography based on Belts theorem[J].Phys Rev Lett, 1991,67,661.
  • 2BENNET C H. Teleporting an Quantum state via Dual classical and Einstein-Podolky-Rosen Channels [J]. Phys Rev Lett, 1993,70:1 895.
  • 3FEYNMAN R. Simulating Physics with Computers[J]. Int J Theor Phys,1982,21 :467.
  • 4FEYNMAN R. Quantum Mechanical Computers[J]. Opt News,1985,11:11.
  • 5WU Y, YANG X. Jaynes-Cummings model for a trapped ion in any position of a standing wave[J]. Phys Rev Lett, 1997, 78:3086.
  • 6KUANG L M. Decoherence induced by discontinuous and stochastic unitary evolution of qubits in quantum computers[J]. Commun Theor Phys, 1998,29(2) : 169.
  • 7BENNETT C H, VINCENZO D P, SMOLIN J A,et al. Mixedstate entanglement and quantum error correction[J]. Phys Rev A,1996,54(5) :3 824.
  • 8WOOTTERS W K. Entanglement of formation an arbitrary state of two qubits[J]. Phys Rev Lett,1998,80(10) :2 245.
  • 9Tohya Hiroshima. Decoherence and entanglement in two-motile squeezed vacuum states[J]. Phys Rev A,2001,63(2):022 305.
  • 10CERF N J, ADAMI C. Quatum extension of conditional probability[J]. Phys Rev A, 1999,60(2): 893.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部