期刊文献+

垂直多孔表面管内高沸点工质强化流动沸腾换热的数值分析

Numerical analysis of enhanced flow boiling heattransfer in vertical porous tube
下载PDF
导出
摘要 在对流动特性和换热机理进行分析的基础上, 建立了垂直多孔表面管内高沸点工质强化流动沸腾换热的数学模型和数值计算方法. 该模型认为环状流区域同时存在强制对流与核态沸腾两种换热方式. 液膜厚度、速度与温度等参数通过求解液膜的质量守恒、动量守恒、能量守恒方程获得. 核态沸腾换热则包括气泡脱离带走的热量及用于加热气化核心影响区流入液体的热量两部分. 提出了流动沸腾情况下的多孔层气泡脱离直径及气化核心密度计算方法. 对异丙苯在火焰喷涂型垂直多孔表面管内向上流动时的沸腾换热进行了数值预测, 大部分工况的计算值与实验结果符合良好. 在低干度区 (x=0. 1), 核态沸腾在总换热中的比例约为50%. 随着干度的增加, 核态沸腾受到越来越大的抑制, 当x为0 .5时, 这一比例降低到约15%. A semi-analytical model was developed for the prediction of enhanced flow boiling heat transfer in vertical porous tubes. The model assumes that forced convection and nucleate boiling coexist in the annular flow regime. Conservations of mass, momentum, and energy are used to determine liquid film thickness and temperature. The heat flux due to nucleate boiling consists of those inside and outside micro-tunnels. A detailed analysis of various forces acting on the bubble is presented to predict its mean departure diameter. The active nucleation site density of porous layer is determined by correcting the pool boiling correlation with a suppression factor. The flow boiling heat transfer coefficients of high saturation temperature organic fluid (cumene) in a vertical plasma coated tube are studied numerically. It is shown that the present model can predict most of experimental values within ±20%. The numerical results also indicate that the nucleate boiling contribution to the overall heat transfer coefficient decreases from 50% to 15% with vapor quality increasing from 0.1 to 0.5.
出处 《化工学报》 EI CAS CSCD 北大核心 2005年第3期400-407,共8页 CIESC Journal
基金 国家自然科学基金专项项目 (50323001) 西安交通大学科学研究基金.~~
关键词 强化流动沸腾 多孔表面管 环状流 核态沸腾 数值分析 Boiling liquids Heat transfer coefficients Mathematical models Nucleate boiling Numerical analysis
  • 相关文献

参考文献11

  • 1杨冬,李永星,陈听宽,李斌.多孔表面管内高沸点工质的强化流动沸腾换热与阻力特性[J].化工学报,2004,55(10):1631-1637. 被引量:16
  • 2Hsieh S S, Ke C G. Bubble dynamic parameters and pool boiling heat transfer on plasma coated tubes in saturated R-134a and R-600a. ASME Journal of Heat Transfer, 2002,124:704-716.
  • 3Chien L H, Webb R L. A nucleate boiling model for structured enhanced surfaces. Int. J. Heat Mass Transfer, 1998, 41 (14): 2183-2195.
  • 4Chen J C. Correlation for boiling heat transfer to saturated fluids in convective flow. Industrial and Engineering Chemistry, Process Design and Development, 1966,5(3):322-329.
  • 5Fu F, Klausner J F. A separated flow model for predicting two-phase pressure drop and evaporative heat transfer for vertical annular flow. Int. J. Heat and Fluid Flow,1997,18(6): 541-549.
  • 6Nakayama W, Daikoku T, Kuwahara H, Nakajima T.Dynamic model of enhanced boiling heat transfer on porous surfaces part 2: analytical modeling. ASME Journal of Heat Transfer, 1980,102:451-456.
  • 7Mikic B B, Rohsenow W M. A new correlation of pool-boiling data including the effect of heating surface characteristics. ASME Journal of Heat Transfer,1969,91:245-250.
  • 8Henstock W H, Hanratty T J. The interfacial drag and the height of the wall layer in annular flows. AIChE J., 1976,22:990-1000.
  • 9Moser K W, Webb R L, Na B. A new equivalent Reynolds number model for condensation in smooth tubes. ASME Journal of Heat Transfer, 1998,120:410-417.
  • 10Klausner J F, Mei R, Bernhard D M, Zeng L Z. Vapor bubble departure in forced convection boiling. Int. J. Heat Mass Transfer,1993,36(3):651-662.

二级参考文献2

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部