期刊文献+

板翅式反应器中甲醇水蒸气重整制氢 被引量:12

Methanol steam reforming in plate-fin reactor for fuel cell system
下载PDF
导出
摘要 研制了一种高效板翅式反应器, 其特点是体积相对较小, 便于放置, 便于扩大规模; 集预热、气化、重整、催化燃烧于一体; 板翅式反应器内部热量利用合理, 放热反应与吸热反应、气化与冷却之间实现了较好的热量耦合; 可实现完全自供热. 在反应器中进行了一系列甲醇水蒸气重整的实验, 考察了不同条件对甲醇重整制氢过程的影响、对反应器床层温度分布的影响, 及反应器的稳定性. 另外, 由于板翅式结构的良好传热性,甲醇水蒸气重整在获得较高转化率的同时重整气中CO浓度较低, 且反应器的稳定性良好. A compact plate-fin reactor consisting of closely spaced plate-fins, where endothermic and exothermic reactions took place in alternate chambers was studied. In the reactor the catalytic combustion of reforming gas that was used to simulate the fuel cell anode off gas (AOG) supplied the necessary heat for the reforming reaction. Hydrogen was produced in one reforming chamber. Two vaporization chambers and two combustion chambers were integrated in one unit of the reactor. The reactor was compact, facilitating mounting and scale up. The effects of the ratio of water/methanol on the reactor performance were investigated, and the distribution of temperature in different chambers was studied. Besides, the steady-state behavior of the plate-fin reactor was studied. Internal plate-fins and external catalytic combustion were applied to enhance the heat transfer in the reactor, which ensured both high methanol conversion and low CO concentration. In addition, this fully integrated reactor showed good testing stability.
出处 《化工学报》 EI CAS CSCD 北大核心 2005年第3期468-473,共6页 CIESC Journal
基金 国家重点基础研究发展规划项目(G2000026401).~~
关键词 板翅式反应器 甲醇水蒸气重整 制氢 燃料电池 Anodes Chemical reactors Combustion chambers Heat transfer Hydrogen Methanol Reforming reactions Temperature distribution Water
  • 相关文献

参考文献13

  • 1Srinivasant S, Velve O A, Manko D J, Parthasarathy A, Appleby A J.High energy efficiency and high power density PEMFC-electrode kinetics and mass transport.J. Power Sources,1991,36(3):299-320.
  • 2Amphlett J C, Mann R F, Weir R D. Hydrogen production by the catalytic steam reforming of methanol. part 3:kinetics of methanol decomposition using C18HC catalyst.Can.J.Chem. Eng.,1988,66(6):950-956.
  • 3Emonts B, Hansen J B, Jrgensen S, H(o)hlein B, Peters R.Compact methanol reformer test for fuel-cell powered light-duty vehicles.J. Power Sources,1998,71(1-2):288-293.
  • 4Wies W, Emonts B, Peters R. Methanol steam reforming in a fuel cell drive system.J. Power Sources,1999,84(2):187-193.
  • 5Iwasa N, Masuda S, Ogawa N, Takezawa N. Steam reforming of methanol over Pd/ZnO:effect of the formation of PdZn alloys upon the reaction.Appl. Catal. A, 1995,125(1):145-157.
  • 6Breen J P, Meunier F C, Ross J R H. Mechanistic aspects of the steam reforming of methanol over a CuO/ZnO/ZrO2/Al2O3 catalyst.Chem. Commun., 1999,22:2247-2248.
  • 7Amphlett J C, Creber K A M, Davis J M, Mann R F, Peppley B A, Stokes D M. Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells. Int. J. Hydrogen Energy, 1994,19(2):131-137.
  • 8Iwasa N, Kudo S, Takahashi H, Masuda S, Takezawa N. Highly selective supported Pd catalysts for steam reforming of methanol.Catal. Letters,1993,19:211.
  • 9Takahashi K, Takezawa N, Kobayashi H. The mechanism of steam reforming of methanol over a copper-silica catalyst.Appl. Catal. A,1982,2(6):363-366.
  • 10Jiang C J, Trimm D L, Wainwright M S, Cant N W. Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst.Appl. Catal. A, 1993,97(2):145-158.

同被引文献116

引证文献12

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部