摘要
研究由不可压缩非牛顿流体理论抽象出来的一类非线性抛物方程的Cauchy问题.主要利用Fourier分解方法讨论非线性抛物方程弱解的时间衰减性,证明了其解在L2范数下的衰减下界4为(1+t)-n ,从而与在相同初始条件下的线性热传导方程的解有同样的衰减下界.
This paper is concerned with the Cauchy problem of the nonliear parabolic equations which appears to be relevant in the theory of incompressible non-Newtonian fluids. Fourier splitting method is used to study the lower bounded of the weak solution and to prove that the weak solution decays in L^2 norm at (1+t)^(^(-n4)). So the decay rates coincide with the decay rates of the solutions to the heat equations with the same initial boundary data.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
2005年第1期17-19,共3页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金资助项目(10171037).
关键词
L^2衰减
弱解
非线性抛物方程
L^2 decay
weak solution
nonlinear parabolic equation