期刊文献+

高速公路沉降的非线性等阶径向点插值法解

Settlement Calculation of Highway Using Nonlinear Radial Point Interpolation Method with Equal-rank Polynomial Basis
下载PDF
导出
摘要 无单元法一个突出的优点在于其只需要结点信息而不需要单元信息。先介绍等阶径向点插值法这种新型无单元的形函数构造思路,接着给出了它非线性求解平面比奥固结问题的主要方程,然后对一软基高速公路的断面沉降进行了计算,并与非线性有限元法结果进行了对比。可以看出该法不但计算精度高,而且在解路堤分级施工的这类移动边界问题的沉降时,比有限元法更方便,具有较好的应用前景。 The basic thought of forming shape functions of radial point interpolation method with equal-rank polynomial basis (ERPIM) is introduced, the nonlinear solution equations for Biot's consolidation are developed with this method, and settlement of one highway on soft ground is calculated. Compared with nonlinear finite element method, it is clear that ERPIM is more accurate and convenient to treat the moving boundary problem as embankment constructed by stages.
出处 《应用力学学报》 EI CAS CSCD 北大核心 2005年第1期103-106,共4页 Chinese Journal of Applied Mechanics
关键词 等阶径向点插值法 高速公路 沉降 有限元法 邓肯-张模型 radial point interpolation method with equal-rank polynomial basis (ERPIM), highway, settlement, finite element method, Duncan-Chang model.
  • 相关文献

参考文献14

  • 1殷宗泽,朱泓,吴钰.沪宁高速公路地基沉降有限元计算分析[J].水利水电科技进展,1998,18(2):22-26. 被引量:48
  • 2Nayroles B, Touzot G., Generalizing the finite element method: diffuse approximation and diffuse elements[J]. Comput. Mech. 1992, 10: 307~318.
  • 3T.Belytschko, Y.Y. Lu., Element free Galerkin Method[J]. Int. J. Num. Meth. Eng, 1994, 37: 229~256.
  • 4G.R.Liu, T.Belytschko., An implementation of the element-free Galerkin Method[J]. Comput Methods Appl. Mech. Engrg, 1994, 13: 397~414.
  • 5Liu W K, Jun S., Reproducing kernel particle methods[J]. Int. J. Numer. Methods Fluids, 1995, 20: 1081~1106.
  • 6C.A Duarte, J.T. Oden., HP-clouds: An h-p meshless method[J]. Numer. Methods for Partial Differential Equations, 1996, 12: 673~705.
  • 7Liu G.R, Gu Y.T., A point interpolation method for two-dimensional solid[J]. Int. J. Numer. Methods Engrg, 2001, 50: 937~951.
  • 8Wang J.G, Liu G.R., A point interpolation method for simulating dissipation process of consolidation[J]. Comput. Methods Appl. Mech. Engrg, 2001, 190, 5907~5922.
  • 9Wang J.G, Liu G R., Numerical analysis of Biot's consolidation process by radial point interpolation method[J]. Int. J. Solids & Structures, 2002, 39:1557~1573.
  • 10R.L Hardy, Theory and applications of the multiquadrics-biharmonic method[J]. Computers and mathematics with Applications, 1990, 19:163~208.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部