期刊文献+

基于新模型的多目标遗传算法 被引量:14

A multi-objective genetic algorithm based on a new model
下载PDF
导出
摘要 给出了个体的序和密度定义及目标空间中解的密度分布方差和均匀性分布指标函数,其中序是Pareto解的质量的一个度量,密度是Pareto解的分布均匀性的一个度量.对任意多个目标函数的优化问题转化成两个目标函数的优化问题,并对转化后的优化问题设计了遗传算法,同时把均匀性分布指标函数引入算法的变异操作中,用于自适应地调节搜索向Pareto最优解集移动和更好地获得解的均匀性分布,直到满足终止条件.数据实验表明该方法对Pareto解的质量及其均匀性分布是有效的. The rank and density of the population are first defined and then the density distribution variance and uniform distribution index function of solutions in objective space are clearly given. The rank is a measure of the quality of solutions, and the density distribution variance is a measure of the uniformity of the distribution of solutions. Using these two measures as two objective functions, the multi-objective optimization problem is finally converted into a two objective optimization problem. For the transformed problem, a novel genetic algorithm is proposed. In designing the algorithm, the uniform distribution index function is integrated into the mutation operator to adaptively adjust the search. As a result, the solutions will gradually move to the entire Pareto front and their distribution will gradually become uniform.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2005年第2期260-263,267,共5页 Journal of Xidian University
基金 国家自然科学基金资助项目(60374063)
关键词 新模型 多目标遗传算法 序和密度 均匀性分布 new model multi-objective genetic algorithm rank and density uniform distribution
  • 相关文献

参考文献8

  • 1邢志栋,曾云辉,刘三阳.变分不等式问题的新发展[J].西安电子科技大学学报,2000,27(5):648-652. 被引量:5
  • 2牛志华,李乃成,肖国镇.一种新的求解多目标优化问题的混合遗传算法[J].计算机工程,2003,29(18):64-66. 被引量:13
  • 3Deb K. Multi-objective Optimization Using Evolutionary A lgorithms[M]. Chichester: John Wiley & Sons, Ltd, 2001. 12-38.
  • 4Lu H, Yen G G. Rank-density Based Multiobjective Genetic Algorith m[A]. In Proc 2000 Cong Evol Comput Piscataway[C]. NJ: IEEE Press, 2002. 944 -949.
  • 5Yen G G, Lu H. Dynamic Multi-objective Evolutionary Algorithm: Ad aptive Cell-based Rank and Density Estimation[J]. IEEE Trans on Evolutionary Computation, 2003, 7(3): 253-274.
  • 6Lu H, Yen G G. Rank-density-based Multi-objective Genetic Algor ithm and Benchmark Test Function Study[J]. IEEE Trans on Evolutionary Computat ion, 2003, 7(4): 325-342.
  • 7Michyalewicz Z, Janikow C Z, Krawczyk J B. A Modified Genetic Algo rithm for Optimal Conrol Problems[J]. Computers Math Applic, 1992, 23(12): 83 -94.
  • 8Zitzler E, Deb K, Thele L. Comparison of Multiobjective Evolutiona ry Algorithms: Empirical Results[J]. Volutionary Computation, 2000, 8(2): 1-24.

二级参考文献13

  • 1孙德锋.广义非线性互补问题的投影收缩法[J].计算数学,1994,16(2):183-194. 被引量:13
  • 2何炳生.论求解单调变分不等式的一些投影收缩算法[J].计算数学,1996,18(1):54-60. 被引量:20
  • 3Fonseca C M,Fleming P J.An Overview of Evolutionary Algorithms in Multiobjective Optimization [J].Evolutionary Computation,1995,28(3): 1-16.
  • 4Michalewicz Z. Genetic Algorithms + Data Structures =Evolution Programs[M]. Springer-verlag, Berlin, Heidelberg,1994.
  • 5Van Veldhuizen D A, Zydallis J B,Lamont G B. Issues in Parallelizing Multiobjective Evolutionary Algorithm for Real World Applications.Proceedings of the 17th Symposium on Proceedings of the 2002 ACM Symposium on Applied Computing, 2002-03.
  • 6Zitzler E,Thiele L.Multiobjective Evolutionary Algorithms:A Comparative Case Study and the Strength Pareto Approach.IEEE Transactions on Evolutionary Computation, 1999, 3(4):257-271.
  • 7lshibuchi H,Murata T.A Multi-objective Genetic Local Search Algorithm and Its Application to FIowshop Scheduling[J].IEEE Transactions on Systems,Man,and Cybernetics Part C:Applications and Reviews,1998,28(3):392-403.
  • 8Han J,JOTA,1997年,94卷,3期,659页
  • 9Peng J M,JOTA,1997年,95卷,2期,419页
  • 10Yao J C,JMAA,1994年,182卷,2期,371页

共引文献16

同被引文献128

引证文献14

二级引证文献479

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部