期刊文献+

基于一种特殊变换的多小波构造(英文) 被引量:1

Construction of Multiwavelets in Terms of a Novel Transformation
下载PDF
导出
摘要 本文引入一种矩阵滤波器的特殊变换。任一紧支撑正交多尺度函数都可由一个简单的矩阵滤波器通过这种变换得到。由此给出一种由多尺度函数构造相应紧支撑正交多小波的算法。与传统方法相比,这种方法既不需要对罗朗多项式矩阵逐行降次,也不需要将多项矩阵分解成特殊的形式,并且不受滤波器长度的限制。可以利用该方法构造出GHM正交多小波。 A novel transformation of matrix filter is introduced in this paper. In terms of this type of transformation, any compactly supported orthogonal multiscaling functions can be constructed from a simple matrix conjugate quadrature filter (CQF). As a result, an algorithm is presented for constructing compactly supported orthogonal multiwavelets from the associated multiscaling function. In comparison with the traditional methods, the order of some polynomial matrices need not be decreased row by row and the polyphase matrix need not be factorized into a special form. Furthermore, this method is not restricted by the length of the filter. By this method, the GHM multiwavelets can be derived.
出处 《工程数学学报》 CSCD 北大核心 2005年第2期191-198,共8页 Chinese Journal of Engineering Mathematics
关键词 正交共轭滤波器的酉变换 多小波 紧支撑 Unitary transform of conjugate quadrature filter rnultiwavelets compactly supported
  • 相关文献

参考文献11

  • 1Goodman T N T, Hardin D P, Lee S L, Tang W S. Wavelets of multiplicity [J]. Trans Amer Math Soc,1993;338:639-654.
  • 2Shen L, Tan H H, Tham J Y. Symmetric-antisymmetric orthonormal multiwavelets and related scalar wavelets[J]. Appl Comp Harm Anal, 2000;8:258-279.
  • 3Strang G, Strela V. Short wavelets and matrix dilation equations[J]. IEEE Trans On Signal Processing,1995;43(1):108-115.
  • 4Lanton W, Lee S L, Shen Z. An algorithm for matrix extension and wavelets construction[J]. Math Comp,1996;65:723-734.
  • 5Jiang Q. On the design of multifilter banks and orthonormal multiwavelets bases[J]. IEEE Trans On Signal Processing, 1998;46 (12):3292-3302.
  • 6Jiang Q. Parameterization of M-channel orthogonal multi-filter banks[J]. Adv Comp Math, 2000;12:189-211.
  • 7Pan J, Jiao L, Fang Y. Construction of orthogonal multiwavelets with short sequence[J]. Signal Processing,2001;81:2609-2614.
  • 8Geronimo J, Hardin D P, Massopust P. Fractal functions and wavelets expansions based on several scaling functions[J]. J Approx Theory, 1994;78:373-401.
  • 9Chui C K, Lian J. A study of orthonormal multiwavelets[J]. J Appl Numer Math, 1996;20(20):273-298.
  • 10Strela V, Heller P N, Strang G, Topiwala P, Heil C. The application of multiwavelet filter banks to image processing[J]. IEEE Trans Image Process, 1999;8:548-563.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部