期刊文献+

股票价格服从跳跃-扩散过程套期保值问题的随机LQ框架 被引量:2

Stochastic LQ Control EYamework for the Hedging Problem as the Stock Price Follows Jump-diffusion Process
下载PDF
导出
摘要 在连续时间金融模型中,一般认为股票(风险资产)的价格的随机扰动为标准的Brown运动,然而在现实中,当有重大信息出现时会对股票的价格产生冲击,使其呈现不连续的跳跃,即股票价格表现为一种跳跃-扩散过程,文中将随机LQ控制模型推广到系统状态的跳-扩过程的随机LQ控制,通过引入跳-扩的Riccati方程而得到最优的反馈控制,然后,运用该框架去处理金融中未定权益的套期保值问题,得到了最优套期保值策略。 In continuous time finance model the stock price volatility is assumed to follow the Brownian motion. However in real world as the significant information occurs, the stock price has discontinuous jump. This paper extends the classical stochastic LQ control to the jump-diffusion model and the jump-diffusion stochastic Riccati equation is introduced, the optimal feedback control can be obtained. As an application in hedging strategy, we obtain the optimal hedging strategy.
出处 《工程数学学报》 CSCD 北大核心 2005年第2期333-338,共6页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(70271021)
关键词 随机LQ控制 跳-扩过程 套期保值 投资组合 stochastic Linear-Quadric control jump diffusion process hedging portfolio
  • 相关文献

参考文献9

  • 1Wonham W M. On a Matrix riccati equation of stochastic control[J]. SIAM J Contr, 1968;6:312-326.
  • 2Bonsoussan A. Stochastic control of partially obserked systems[M]. Cambridge. U K: Cambridge Univ,Press, 1992.
  • 3Davis M H A. Linear Estimation and stochastic control[M]. London U.K: chaopman and Hall, 1977.
  • 4Chen S P, Li X J, Zhou X Y. Stochastic linear quadratic requators with indefinite control weigh consts[J].SIAM J. Control. optim 1998;36:1685-1702.
  • 5HanZhong Wu, Xun Yu Zhou. Characterizing All optimal Controls foran indefinite stochastic Linear Quadratic Control problem[J]. IEEE Transactions on Automatic Control, 2002;47(7):1119-1122.
  • 6Zhou X Y, Li D. COntinuous-Time Mean-Variance portfolio selection: A stochastic LQ Framework[J]. ApplMath, 2000;42:19-33.
  • 7Andrew E B. LIM, Xun Yu Zhou. Mean-Variance portforio selection with Random parameters In a complete Market[J]. Mathematics of Operations Research, 2002;27(1):101-120.
  • 8Michael, kohlmann, and Xun Yu Zhou. Relationship Between Backward stochastic Differential Equations and stoohastic controls: A Linear-Quadratic Approach[J]. SIAM J, Control optim, 2000;38(5):1392-1407.
  • 9Shuping Chen, XunJing Lin, Xun Yu Zhou. Stochastic Linear Quadratic Regulatiors with Indefinite Control weight Costs[J]. SIAM J control Optim, 1998;36(5):1685-1702.

同被引文献24

  • 1张利兵,潘德惠.标的股票价格服从跳跃-扩散过程的期权套期保值率确定[J].系统工程理论方法应用,2005,14(1):23-27. 被引量:11
  • 2Schweizer M. Variance-optimal hedging in discrete time[ J]. Mathematics of Operations Research, 1995, 20 ( 1 ) : 1-32.
  • 3Andrew LIME B. Quadratic hedging and mean-variance portfolio selection with random parameters in an incomplete market [ J]. Mathematics of Operations Research, 2004, 29( 1 ) : 132-161.
  • 4Andrew LIME B. Mean-variance hedging when there are jumps[ J]. SIAM Journal on Control and Optimization, 2005, 44 (5) : 1893-1922.
  • 5Ales Cerny. Dynamic programming and mean-variance hedging in discrete time[ J]. Applied Mathematical Finance, 2004, 11 (1) : 1-25.
  • 6Gugushvili S. Dynamic programming and mean-variance hedging in discrete time[ J]. Georgian Mathematical Journal, 2003, 10(2) : 237-246.
  • 7Darrell Duffle, Henry Richardson R. Mean-variance hedging in continuous time[J]. The Annals of Probability, 1991, 1 ( 1 ) : 1-15.
  • 8Laurent J P, Pham H. Dynamic programming and mean-variance hedging[ J]. Finance Stochast, 1999, (3) : 83-110.
  • 9Potters M, Bouchaud J P, Sestovic D. Hedged monte-carlo: low variance derivative pricing with objective probabilities[ J]. Physica A: Statistical Mechanics and its Applications 2001,289 (3-4) : 517-525, Elsevier.
  • 10Michael Johannes, Nicholas Polson. MCMC Methods for Continuous-Time Financial Econometrics, Handbook of Financial Econometrics, 2006, Elsevier.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部