摘要
当BP网络模型的输入变量包括多个类别时,如果其中几类变量的个数远多于其它类别的变量,变量多的这几类会削弱其它类变量对输出变量的影响,导致模型预报误差增大。提出BP网络输入变量加权分层的改进方法。根据熵值法模型对每个类别包含的所有变量按其重要程度加权平均,得到代表各类的综合影响指标,将这些综合影响指标作为BP网络模型的输入变量得到模型预报结果。改进后的模型更全面合理地考虑了各类输入变量的变化对输出变量的影响,发展了神经网络的应用理论。实例计算表明,模型预报精度得到明显提高。
When the input includes several regimentations and the number of some variables in some regimentations is much more than that of the other regimentations, the former will weak the latter's effect on the output, which leads to the augment about the forecasting error of the model. The entropy based the self- accommodation back propagation neural model is introduced to solve this problem, in which the several variables of each regimentation are weighted according to their importance, so each regimentation is turned into one input respectively in the back-propagation (BP) net work model. The improved model can take the all kinds of inputs into account entirely and reasonably, and boost the forecast accuracy, which develops the applied theory of the neural network.
出处
《水科学进展》
EI
CAS
CSCD
北大核心
2005年第2期263-267,共5页
Advances in Water Science
基金
国家重点基础研究发展计划(973)资助项目(2003CB415203)
国家自然科学基金资助项目(50279035)~~
关键词
BP网络
神经网络
预报方法
河床变形
加权分析
信息熵
BP network
artificial neural network
forecasting method
riverbed-deformation
weight analysis
information entropy