摘要
为了研究气动力对磁浮列车运行稳定性的影响,以上海磁浮列车为研究对象,采用动网格技术,通过求解三维可压缩非定常N S方程对磁悬浮列车在相对速度860 km/h交会时的气动力进行数值模拟;同时将车体、悬浮架作为弹性体,悬挂系统作为弹簧阻尼单元,建立了详细的系统动力学模型,对考虑列车交会瞬态压力冲击作用下的高速磁浮列车进行了横向振动分析。计算结果表明,流场数值计算出的最大压力波幅值与实车试验结果两者差距小于6%;仅考虑轨道不平顺时,磁浮列车的横向振动较小,而在考虑磁浮列车高速运行时产生的交会压力波的情况下,车体却产生了较大的横向振动,底架最大横向加速度达1 5 m/s2,经过二系悬挂的缓冲作用后振动明显减小,悬浮架最大横向振动加速度约为0 7 m/s2。
Using the 3-D compressible N-S equations and dynamic mesh, the train passing pressure pulse of Shanghai maglev train at the relative speed of 860 km/h was analyzed in order to know the aerodynamic force's influence on the stability of maglev train. A detailed dynamic model was established, where the carbody was considered as elastic body while the suspension system was considered as spring-damp element. The transverse vibration considering the train passing pressure pulse was calculated. The results show that the difference of the maximal pressure pulse between numerical calculation and real car test is less than 6%, and the transverse vibration only arosed by the irregularity of rail track is little. It is great if the influence of train passing pressure pulse is considered, and the underframe's maximal transverse acceleration is 1.5 m/s2. The suspension bogies' acceleration reduce to 0.7 m/s2 under secondary suspensions' buffer action.
出处
《交通运输工程学报》
EI
CSCD
北大核心
2005年第1期39-44,共6页
Journal of Traffic and Transportation Engineering
基金
教育部跨世纪优秀人才培养计划基金项目([2002]48)