摘要
引入弱序Lipschitz条件,研究了Banach空间中不具有任何紧性或连续性条件的一类凹(凸)算子不动点的存在性, 得到了新的不动点定理,是某些已有结果的本质改进和推广.
In this paper, we define the concept of weak order-Lipschitz condition, and study the existence of fixed point of some concave (convex) operators without continuity and compactness conditions in Banach spaces. And some new fixed point theorems are obtained. The results presented here are essential improvements for some existing results.
出处
《西南民族大学学报(自然科学版)》
CAS
2005年第2期170-172,共3页
Journal of Southwest Minzu University(Natural Science Edition)
基金
河南省教委科研基金资助项目(1999110018).