期刊文献+

符号空间有限型子转移的稠密混沌 被引量:3

DENSE CHAOS FOR SUBSHIFTS OF FINITE TYPE IN SYMBOLIC SPACE
下载PDF
导出
摘要 设T是紧致度量空间(X,ρ)上的连续自映射.说T是稠密混沌的(通有混沌的),如果{(x,y)∈X2|limsupρ(Tn(x),Tn(y))>0,liminfρ(Tn(x),Tn(y))=0}是X2的一个稠密集(相应地,剩n→∞n→∞余集).证明了:对于由不可约的0,1-方阵A决定的有限型子转移σA而言,σA是稠密混沌的,σA是通有混沌的以及σA是拓扑混合的,这些叙述均等价.并进一步指出,σA是稠密混沌的与σA是Li-Yorke混沌的等价当且仅当方阵A的阶数少于4. Suppose that T is a continuous self map on a compact metric space endowed with a metric ρ. It is said that T is densely chaotic (generically chaotic),if {(x,y)∈X^2|(lim sup)n?→∞ (ρ(T()~n(x),)T()~n(y))>0,(lim inf)n→∞ ρ(T()~n(x),T()~n(y))=0} is dense (residual, resp.) in X^2. In the present paper, it is shown that for σ_A, the subshift of finite type determined by an irreducible square matrix A consisting of 0's and 1's, the following three statements are equivalent: σ_A is densely chaotic, σ_A is generically chaotic and σ_A is topologically mixing. Moreover, that σ_A is densely chaotic is equivalent to that σ_A is Li-Yorke chaotic if and only if the order of the square matrix A is less than 4.
出处 《华南师范大学学报(自然科学版)》 CAS 2005年第1期11-15,共5页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金资助课题(10171034)
关键词 有限型子转移 混沌 符号空间 LI-YORKE 紧致度量空间 连续自映射 拓扑混合 sup lim inf 稠密集 剩余集 不可约 方阵 等价 阶数 subshift of finite type topological mixing generic chaos dense chaos Li-Yorke chaos
  • 相关文献

参考文献6

  • 1LI T Y, YORKE J A. Period three implies chaos[J]. Amer Math Monthly, 1975, 82(10): 985-992.
  • 2PIOREK J. On the gereric chaos in dynamical systems[J]. Univ Iagel Acta Math, 1985,25: 293-298.
  • 3SNOHA L. Generic chaos[J]. Comment Math Univ Carolinae, 1990,31(4): 793-810.
  • 4SNOHA L. Dense chaos[J]. Comment Math Univ Carolinae, 1992,33(4): 747-752.
  • 5MURINOVA E. Generic chaos in metric spaces[J]. Acta Univ M Beli, 2000(8): 43-50.
  • 6BLOCK L S, COPPEL W A. Dynamics in One Dimension[M]. New York: Springer-Verlag, 1992.

同被引文献13

  • 1黎日松,吴华明.符号动力系统(∑(Z^+),σ)的若干性质[J].湛江海洋大学学报,2006,26(1):71-74. 被引量:3
  • 2叶向东,黄文,邵松.拓扑动力系统概论[M].北京:科学出版社,2008.
  • 3GLASNER S. Divisible properties and the Stone- Cech compactification[J]. Canada J Math, 1980, 32(4) :993 - 1007.
  • 4GOTTSCHALK W, HEDLUND G. Topological Dynamics [ M ]. Colloquium Publications, Vol 36. Providence : Amer Math Soc, 1955.
  • 5FURSTENBERG H. Recurrence in ergodic theory and combinatorial number theory [ M ]. Princeton : Princeton University Press, 1981.
  • 6FURSTENBERG H,WEISS B. Topological and combionatorialnumber theory[ J]. J D'Ananlyse Math, 1978, 34: 61 - 85.
  • 7BERGELSON V. Combinatorial and diophantine applications of ergodic theory [ C ]//Handbook of Dynamical Systems, Amsterdam : Elsevier B V,2005,1B :745 - 841.
  • 8KURKA P. Topological and symbolic dynamics [ M]. Volume 11 of Cours Specialies. Paris: Societe Mathematique de France, 2003.
  • 9BLOKH A, FIELDSTEEL A. Sets that force recurrence [J]. Proc Amer Math Soc, 2000, 130 (12):3571 - 3578.
  • 10Li T Y , Yorke J A. Period three implies chaos [ J]. American Mathematical Mothly, 1975, 82:985 -992.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部