期刊文献+

一类分形集及其刻划 被引量:2

A Class of Fractal Sets And Its Depiction
下载PDF
导出
摘要 本文中我们构造了R^d中一类较普遍的分形集,它包括瘦分形与胖分形,瘦分形为R^d中的Cantor尘集,分维D_f=ln2~d/ln(2/k^(1/d)),对胖分形集我们求得分形指数β=-lnk/ln2(0<k≤1/2),指数α=d。 It this paper,we construct a more general class of fractal sets. It includes thin and fat fractals. The thin fractals are Cantor sets in Rd and the fractal dimension Df=ln2d/ln2/k1/d. And we calculate the fractal exponent β= -lnk/ln2 0<k≤1/2) and α-d for fat fractals.
出处 《应用数学》 CSCD 北大核心 1994年第1期60-64,共5页 Mathematica Applicata
关键词 胖分形 分维 分形指数 分形集 Fractel Fat fractal Fractal dimension Fractal exponent
  • 相关文献

参考文献3

二级参考文献9

  • 1杨路,张景中.线段上连续自映射嵌入半流的充分必要条件[J]数学学报,1986(02).
  • 2杨路,张景中.关于凸体的一个不等式的简单证明[J]数学学报,1983(01).
  • 3Remo Radii,Antonio Politi. Statistical description of chaotic attractors: The dimension function[J] 1985,Journal of Statistical Physics(5-6):725~750
  • 4M. F. Barnsley,J. S. Geronimo,A. N. Harrington. Geometry and combinatorics of Julia sets of real quadratic maps[J] 1984,Journal of Statistical Physics(1-2):51~92
  • 5E. Ott,W. D. Withers,J. A. Yorke. Is the dimension of chaotic attractors invariant under coordinate changes?[J] 1984,Journal of Statistical Physics(5-6):687~697
  • 6Michael Widom,David Bensimon,Leo P. Kadanoff,Scott J. Shenker. Strange objects in the complex plane[J] 1983,Journal of Statistical Physics(3):443~454
  • 7F. Ledrappier. Some relations between dimension and Lyapounov exponents[J] 1981,Communications in Mathematical Physics(2):229~238
  • 8Giancarlo Benettin,Luigi Galgani,Antonio Giorgilli,Jean-Marie Strelcyn. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory[J] 1980,Meccanica(1):9~20
  • 9James L. Kaplan,James A. Yorke. Preturbulence: A regime observed in a fluid flow model of Lorenz[J] 1979,Communications in Mathematical Physics(2):93~108

共引文献28

同被引文献38

引证文献2

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部