摘要
本文对一般非线性系统,提出了三种高阶迭代学习控制算法:(Ⅰ)u_(h+1)=sum from j=1 to r(P_ju_(k-j+1)+Г_je_(h-j+1));(Ⅱ)u_(k+1)=sum from j=1 to r(P_ju_(k-j+1)+F_je_(k-j+1));(Ⅲ)u_(k+1)=sum from j=1 to r{P_ju_(k-j+1)+(Г_j+F_jd/(dt))e_(k-j+1)},其中u_(k+1)=u_(k+1)(t)表示系统第k+1次运行时的输入;e_k=y_k-y_d;y_d是系统所期望的输出;y_k是系统第k次运行时的输出;P_j,Г_j,F_j(j=1,…,r)是常数阵;进而给出了比较弱的收敛性条件。
Three types of higher-order iterative learning control algorithm are presented for general nonlinear systems,which may be operated repeatedly at low cost. The convergency conditions are also obtained.
出处
《应用数学》
CSCD
北大核心
1994年第4期382-389,共8页
Mathematica Applicata
关键词
非线性系统
学习控制
算法
收敛性
Nonlinear systems
Learning control
Algorithm
Convergency