摘要
本文(a)对文献[1]中的定理2进行了修正,取消了假设条件V_7>0;(b)对曲线M(s ̄2,r)=0,J(s ̄2,r)=0,L(s ̄2,r)=0,T(s ̄2,r)=0,s ̄2=s以及s ̄2=s的位置关系进行了讨论,在保证系统(1.1)具有极限环(1,3)分布的情况下,扩大了参数(s,r)的变化范围,并用图示给以清晰说明:(c)讨论了一类具有两个无限远奇点的平面二次系统极限环的(1,3)分布:(d)对系统(1.1)不论它在无限远处出现一个、两个或三个奇点,给出了出现极限环线(1,3)分布的统一处理方法。
In this paper,(a)we revise tbe theorem 2 of reference [1] ,omit the condition V_7>0; (b) we discuss the relative Positions of six curves M(s ̄2,)=0,J(s ̄2,r)=0~=0, L(s ̄2,r)=0,T(s ̄2,r)=0,s ̄2=s and s ̄2=s. Under the condition of the (1,3) distribu-tions of limit cycles, we expand the variable regions of parameters (s,r) and clearly show them in figure; (c)we study the (1,3) distributions of limit cycles of one kind quadratic systems with two singular points at the infinite; and (d)we give a general method to discuss the (1,3) distributions of limit cycles of system (1) whatever there is one, two or three singular points at the infinite.
出处
《应用数学和力学》
CSCD
北大核心
1994年第5期443-445,共3页
Applied Mathematics and Mechanics