摘要
推广的KdV方程u_t+αuu_x+μu_(x3)+εu_(x5)=0 ̄[1]是典型的可积方程。它先后在研究冷等离子体中磁声波的传播 ̄[2],传输线中孤立波 ̄[3]和分层流体中界面孤立波 ̄[4]时导出。本文对推广的KdV方程的特征问题,在Riemann函数的基础上,设计一恰当结构,并由此化待征问题为一与之等价的积分微分方程。而该积分微分方程对应的映射E是列自身的映射 ̄[5],依不动点原理,积分微分方程有唯一的正则解,即推广的KdV方程的特征问题有唯一解,且由积分微分方程序列所得的迭代解于Ω上一致收敛。
The generalized KDV equation, u_t+αuu_x+μu_x3+εu_x5=0, is a typical integrable equation. It is derived by studying the disseminations of magnet sound wave in cold plasma[2], the isolated wave in transmission line ̄[3], and the isolated wave in the boundary surface of the divided layer fluid [4]. For the characteristic problem of the generalized KdV equation, this paper, on the basis of Riemann function, designs a suitable structure, then changes the characteristic problem into an equivalent integral and differential equation whose corresponding mapping E is a mapping to itself [5]. According to the principle of fixed point, the above integral and differential equation has a unique regular solution, so the character-istic problem of the generalized KdV equation has a unique solution. The itera-tive solution derived from the integral-differential equation sequence is uniformly convergent in Ω.
出处
《应用数学和力学》
CSCD
北大核心
1994年第5期463-469,共7页
Applied Mathematics and Mechanics
关键词
积分微分方程
KDV方程
解
特征问题
Riemann function, structure, integral and differential equation, fixed point, uniformly convergent