摘要
本文研究了矩形Reissner中厚板和夹层板的后屈曲特性。首先将矩形中厚板和夹层板的基本方程和边界条件表述成统一的无量纲形式。对不同的边界条件,特别是不对称边界条件,文中发展了一种应用于非线性分析的混合Fourier级数求解新方法,获得了级数形式的精确解。非线性偏微分方程化为无穷元非线性代数方程组,数值计算中截取有限项进行迭代求解。
Postbuckling behavior is investigated for rectangular Rcissner’s moderately thick plates and sandwich plates.The fundamental equations and boundary condi- tions are expressed in unified dimensionless form for rectangular moderately thick plates and sandwich plates.Exact solutions of series form with a number of dif- ferent boundary conditions.especially with unsymmetrical boundary conditions,are obtained by developing a new technique of mixed Fourier series in nonlinear analysis.The nonlinear partial differential equations are reduced to an infinite set of simultaneous nonlinear algebraic equations.which are truncated by iterat- ion in numerical computations.
出处
《应用数学和力学》
CSCD
北大核心
1994年第7期577-582,共6页
Applied Mathematics and Mechanics
关键词
后屈曲
中厚板
夹层板
矩形板
屈曲
postbuckling,moderately thick plates.sandwich plates