摘要
利用系统运动方程的线性化方程及其伴随方程的相互关系,以及散度表达式在全Euler算子作用下为零这一特性,通过引进守恒量乘子来求得运动系统的守恒量.该方法不需要运动系统的Lagrange函数.以Fokker-Planck方程为例,利用该方法可以很容易给出它的无穷多守恒量.
By using the relationship between the adjoint equation and the linearized equation of the motion system, and by using the well-known result that divergence expressions are characterized by annihilation under the full Euler operator, a multiplier method was adopted to construct the conserved quantities of the motion equations. The Lagrange function of the motion system is not necessary for this method. The Fokker-Planck equation was given to illustrate the application of this method, and its infinite conserved quantities can be obtained easily by using this method.
出处
《动力学与控制学报》
2005年第1期7-9,共3页
Journal of Dynamics and Control
基金
国家自然科学基金资助项目(10272021)~~