期刊文献+

贝叶斯不确定性推理及其在往复式压缩机故障诊断中的应用 被引量:2

下载PDF
导出
摘要 为了提高往复式压缩机故障诊断效率和质量 ,研究了贝叶斯不确定性推理的基本理论和原理 ,分析了贝叶斯不确定性推理的特点和用于设备故障诊断的优势。探讨了几种贝叶斯网络先验概率的获取途径。通过实际分析确定出了往复式压缩机贝叶斯诊断网络的先验概率 ,为利用不确定性信息和不确定关系进行推理提供了条件。研究了往复式压缩机贝叶斯推理算法、算法步骤 ,并在 Windows环境下用 VisualBasic语言开发的系统 ,建立了往复式压缩机贝叶斯诊断网络系统。
出处 《化工装备技术》 CAS 2005年第2期65-70,共6页 Chemical Equipment Technology
  • 相关文献

参考文献7

二级参考文献20

  • 1王璇,李春升,周荫清.多传感器信息融合技术[J].北京航空航天大学学报,1994,20(4):402-406. 被引量:23
  • 2郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-11. 被引量:157
  • 3[1]Heckerman D. Learning Bayesian Networks: [Technical Report MSR-TR-95-02]. Microsoft Research, Microsoft Corporation, 1995
  • 4[2]Friedman N. Bayesian Network Classifiers. Machine Learning, 1997,29: 131~163
  • 5[3]Heckerman D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1997,1: 79~119
  • 6[1]Heckerman D. Bayesian networks for data mining [J]. Data Mining and Knowledge Discovery, 1997, 1: 79~119.
  • 7[2]Heckerman D, Geiger D, Chickering D. Learning Bayesian Networks: the combination of knowledge and statistical data [J]. Machine Learning, 1995, 20: 196~243.
  • 8[3]Geiger D, Heckerman D. A characterization of the Dirichlet distribution with applicable to learning Bayesian networks [A]. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence [C]. Montreal, QU, 1995. 196~207.
  • 9[4]Cooper G, Herskovits E. A Bayesian method for the induction of probabilistic networks from data [J]. Machine Learning, 1992, 9: 309~347.
  • 10[5]Dagum P, Luby M. Approximating probabilistic inference in Bayesian belief networks is NP-hard [J]. Artificial Intelligence, 1993, 60: 141~153.

共引文献153

同被引文献24

  • 1杨俊,谢寿生,于东军.基于支持向量机的航空发动机故障诊断[J].机械科学与技术,2005,24(1):123-126. 被引量:10
  • 2于希宁,牛成林,李建强.基于决策树和专家系统的短期电力负荷预测系统[J].华北电力大学学报(自然科学版),2005,32(5):57-61. 被引量:27
  • 3Peter B, Fussel D, Hecher O. Detection and isolation of sensor faults for nonlinear processes based on local linear models[ C ]. Albuquerque : American Control Conference, 1997.
  • 4Rich S H, V Venkatasubramanian. Model based reasoning in diagnosis expert systems for chemical process plants [ J ]. Computers & Chemical Engineering, 1987,11 ( 2 ) : 111-122.
  • 5Rengaswamy R,V Venkatasubramanian. A syntatic pattern-recognition approach for process monitoring and fault diagnosis [ J ]. Engineering Application of Artificial Intelligence, 1995,8 ( 1 ) : 35 -51.
  • 6Huang Yannchang, Yang Hongtzer, Huang chinglen. Developing a new transformer fault diagnosis system through evol utionary fuzzy logic [ J ]. IEEE Transaction on Power Delivery, 1997,12 ( 2 ) : 1342-1349.
  • 7Venkat V, King C. A neural network methodology for process fault diagnosis [ J ]. American Institute of Chemical Engineers Journal, 1989,35 ( 12 ) : 1993-2002.
  • 8Hoskins J C, D M Himmelblau. Fault detection and diagnosis using artificial neural network [ C ]. Artificial Intelligence in Process Engineering. Boston: Boston Acodemic Press, 1990:123-160.
  • 9张煜东,吴乐南,王水花.专家系统发展综述[J].计算机工程与应用,2010,46(19):43-47. 被引量:130
  • 10丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. 被引量:912

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部