期刊文献+

圆形槽波导振荡器中径向盘厚度和阻抗的关系

Relationship between input impedance and radial disk thickness in circular groove guide oscillator
下载PDF
导出
摘要 为了实现具有较大阻抗的圆形槽波导与阻抗较小的有源器件之间的阻抗匹配,在W波段圆形槽波导振荡器中采用了径向盘结构,通过改变径向盘的厚度来调节输入阻抗的大小.用完全匹配层将圆形槽波导的开放边界截断为有限区域后,应用有限元法分析基于圆形槽波导的毫米波元件.为了避免传统的有限元方法所遇到的伪模式问题,选用了棱边元对圆形槽振荡器中的径向盘结构的输入阻抗进行数值计算.得出了频率在85~100GHz之间,对应于不同的径向盘厚度的输入阻抗.径向盘的厚度小于0.3mm时输入阻抗较小.计算结果为用于W波段圆形槽波导振荡器的径向盘的优化设计提供了依据. In order to match the widely different impedances between circular groove guide and millimeter wave semiconductor device, the radial disk structure is used in W-band oscillator based on circular groove guide. By varying the radial disk thickness, the input impedance can be changed. Perfectly matched layer (PML) is applied to truncate the open boundary of circular groove guide to fulfill the requirement of limited domain that the finite element method (FEM) can proceed. The input impedance from 85 to 100 GHz was calculated by tetrahedral edge element to eliminate spurious solutions. When thickness is less than 0.3 mm, the input impedance of the radial mount is relatively low. The numerical results that the impedance changes with the disk thickness are very useful for design and adjustment of W-band circular groove guide oscillators.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第2期192-194,共3页 Journal of Southeast University:Natural Science Edition
关键词 圆形槽波导 径向盘 有限元法 阻抗 Circular waveguides Electric impedance Finite element method Numerical methods Operations research
  • 相关文献

参考文献11

  • 1Doring K H. High transformation ratio for impedance matching with a radial line [J]. Electron Lett, 1980,16(2): 50-51.
  • 2Yang H S, Ma J L, Lu Z Z. Circular groove guide for short millimeter and submillimeter waves [J]. IEEE Trans Microwave Theory Tech, 1995, 43(2): 324-330.
  • 3Zhao L, Cangellaris A C. GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids [J]. IEEE Trans Microwave Theory Tech, 1996, 44(12): 2555-2563.
  • 4Bérenger J P.Application of the CFS PML to the absorption of evanescent waves in waveguides[J].IEEE Microwave Wireless Compon Lett, 2002,12(6):218-220.
  • 5Mitchell A, Kokotoff D M, Austin M W. Improvement to the PML boundary condition in the FEM using mesh compression [J].IEEE Transactions on, Microwave Theory and Techniques, 2002, 50(5):1297-1302.
  • 6Bossavit A. A rationale for "edge-elements" in 3-d fields computations [J]. IEEE Trans Magn, 1988,24(1): 74-79.
  • 7Arena D, Ludovico M, Manara G, et al. A hybrid mode matching/FEM technique with edge elements for solving waveguides discontinuity problems [J]. Antennas and Propagation Society International Symposium, 2000, 4(16-21): 2028-2031.
  • 8Wu R B. A wideband waveguide transition design with modified dielectric transformer using edge-based tetrahedral finite-element analysis [J]. IEEE Trans Microwave Theory Tech, 1996, 44(7): 1024-1031.
  • 9Valor L, Zapata J. An efficient finite element formulation to analyze waveguides with lossy inhomogeneous bi-anisotropic materials [J]. IEEE Trans Microwave Theory Tech, 1996, 44(2): 291-296.
  • 10Guillouard K, Wong M-F, Hanna V F, et al. A new global finite element analysis of microwave circuits including lumped elements [J]. IEEE Trans Microwave Theory Tech, 1996, 44(12): 2587-2594.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部