期刊文献+

一类强阻尼非线性双曲型方程组解的存在性与整体衰减估计

Existence and decay estimate of global solution for a nonlinear hyperbolic system with strong damping
下载PDF
导出
摘要 研究一类强阻尼非线性双曲型方程组中阻尼项Δuit的耗散作用.利用逐次逼近方法和一系列经典的估计, 证明了弱解的局部存在性和惟一性.然后利用能量方法, 借助于一个不等式supt≤s≤t+1(s)≤β((t)-(t+1) )给出了解的衰减估计.分析结果表明,阻尼项强烈地改变双曲型方程解的渐近行为,强阻尼双曲型方程组的能量E(t)随时间按指数衰减, 即E(t)≤Cexp(-λt). The dissipative function of term Δuit in a class of nonlinear hyperbolic system with strong damping is studied. Firstly, by use of the successive approximation method and a series of classical estimates, the local existence and uniqueness of weak solution are proved. Then, using energy method and by means of an inequality sup(t &le s &le t+1) φ(s) &le β(φ(t)-φ(t + 1)), decay estimate of solution is put forward. The result indicates that the damping term drastically changes the asymptotic behavior of the hyperbolic equation. In other words, the energy E(t) of the nonlinear hyperbolic system decays exponentially in time, i.e., E(t) &le Cexp(-λt).
作者 孙福芹
机构地区 东南大学数学系
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第2期316-319,共4页 Journal of Southeast University:Natural Science Edition
基金 教育部科技重点基金资助项目(104090) 国家自然科学基金资助项目(10471022)
关键词 双曲型方程组 强阻尼 整体解 衰减估计 Boundary conditions Numerical methods Theorem proving
  • 相关文献

参考文献7

  • 1Esquivel-Avila J A. Qualitative analysis of a nonlinear wave equation [J]. Discrete and Continuous Dynamical Systems, 2004, 10(3):787-804.
  • 2Kobayashi T, Pecher H, Shibata Y. On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity [J]. Math Ann, 1993, 296(2):215-234.
  • 3Ma T F, Soriano J A. On weak solutions for an evolution equation with exponential nonlinearities [J]. Nonlinear Analysis TMA, 1999, 37(8): 1029-1038.
  • 4Ono K. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations [J]. Discrete Contin Dynam Systems, 2003, 9(3): 651-662.
  • 5Park J Y, Kim H M, Park S H. On weak solutions for hyperbolic differential inclusion with discontinuous nonlinearities [J]. Nonlinear Analysis TMA, 2003, 55(1,2):103-113.
  • 6Li M R, Tsai L Y. Existence and nonexistence of global solutions of some system of semilinear wave equations [J]. Nonlinear Analysis TMA, 2003, 54(8):1397-1415.
  • 7Nakao M. A difference inequality and its applications to nonlinear evolution equations [J]. J Math Soc Japan, 1978,30(4):747-762.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部