期刊文献+

一类具二阶非线性项的Liénard方程的定性分析及应用 被引量:3

Qualitative Analysis and Application on a Kind of Liénard Equations with Second Order Nonlinear Term
下载PDF
导出
摘要 本文通过对一类具二阶非线性项的Liénard方程的定性分析得到了关于其解的存在性、单调性及振荡性的若干结果,并作为推论给出了具典型意义的几个非线性发展方程行波解的重要性质.这些性质不仅对于定性分析有意义,而且可使我们知道解的大致形状,从而提高求解的效率. By qualitative analyzing a kind of Liénard equations wi th second order nonlinear term,we obtain many results of its solution,such as ex istence,monotony and oscillation.Therefore,we find important properties of trave lling wave solutions about some nonlinear equations which have representative si gnificance.These properties not only bear important meaning towards qualitative analysis,but also make us know approximate shape of their solutions so that impr ove solving efficiency.$$$$
出处 《应用数学》 CSCD 北大核心 2005年第2期194-203,共10页 Mathematica Applicata
基金 国家自然科学基金资助项目(10371023) 上海市高等学校科学技术发展基金项目(03GK15)
关键词 LIÉNARD方程 定性分析 Poincare变换 全局相图 无切曲线 Liénard equation Qualitative analysis Poincare transfor mation Global phase portraits Curve without contact
  • 相关文献

参考文献9

  • 1Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems[J].Philos. Trans. R. Soc. London Ser. , 1972,272 (A) :457-465.
  • 2Aiberf J. Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equations[J]. Diff Equs. ,1986,63:117-134.
  • 3Hirota R. Exact n- solion solutions of the wave equation of long wave in shallow-water and in nonlinear lattices[J]. J. Math. Phys. , 1973,14(7) :810-814.
  • 4Bona J L,Priehar W G,Seott L R. An evalution of a model equation for water[J]. Prilos. Trans. Roy.Soc., London : 1981 ,302(1471): 457-510.
  • 5Beltrami E. Mathematics for Dynamic Modeling[M]. New York: Academic Press, 1987.
  • 6Seyler C E,Fanstermmacler D C. A symmetric regularized long wave equation[J]. Phys. Fluids, 1984,27(1):447.
  • 7Ablowitz M J. Lectures on the inverse scattering transform[J]. Studies in Applied Mathematics, 1978,58(11) : 17-94.
  • 8Whitham G B. Linear and Nonlinear Waves[M]. New York:John Wiley, 1974.
  • 9王明亮.几个非线性演化方程的准确解[J].数学杂志,1983,3(4):331-340.

同被引文献18

  • 1李向正,王明亮,李晓燕.应用F展开法求KdV方程的周期波解(英文)[J].应用数学,2005,18(2):303-307. 被引量:13
  • 2Wang Mingliang, Li Xiangzheng, Zhang Jin liang. The (G'/G)-expansion Metlaod and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics[J]. Physics Letters A,2008,372:417 -423.
  • 3Kudryashov N A. On" New Traveling Wave Solutions" of the KdV and the KdV-Burgers Equations [ J ]. Commun Nonlinear Sci Numer Simulat,2009(14) :1891 - 1900.
  • 4[俄]阿诺尔德VI.常微分方程[M].北京:科学出版版社,2001.
  • 5钱祥征,戴斌祥,刘开宇.非线性常微分方程[M].长沙:湖南大学出版社,2006.
  • 6BENJAMIN T B, BONA J L, MAHONY J J. Model equation for long waves in nonlineardispersive systems[J]. Philos. Trans. Roy. Soc. London Ser., 1972, 272 (A):457 - 465.
  • 7NEMYTSKII V, STEPANOV V. Qualitative theory of differential equations[M]. New York.. Dover, 1989.
  • 8ZHANG Zhifen, DING Tongren. Qualitiative theory of differential equations[M]. Providence, Rhode Island: American Mathematical Society, 1992.
  • 9Hyunsoo K,Rathinasamy S.Travelling Wave Solutions for Time-delayed Nonlinear Evolution Equations[J].AppliedMathematics Letters,2010,23(5):527-532.
  • 10Ahmed E,Abdusalam H A.On Modified Black-Scholes Equation[J].Chaos,Solitons and Fractals,2004,22:583-587.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部