期刊文献+

不同尺寸ZnS:Mn纳米粒子的静压光致发光研究

INVESTIGATION OF PHTOLUMINESECENCE UNDER HYDROSTATIC PRESSURE IN DIFFERENT SIZED ZnS:Mn NANOPARTICLES
下载PDF
导出
摘要 测量了ZnS:Mn纳米粒子以及相应体材料在不同压力下的光致发光谱.随压力增大,来源于Mn2+离子的4T1 6A1 跃迁的桔黄色发光明显红移.体材料和 10, 4. 5, 3. 5, 3nm的ZnS:Mn纳米粒子中Mn2+发光的压力系数分别是-29. 4±0. 3和-30. 1±0. 3, -33. 3±0. 6, -34. 6±0. 8, -39±1meV/GPa,压力系数的绝对值随粒子尺寸减小而增大,该种尺寸关系由晶体场场强Dq和Racah参数B值的尺寸依赖性引起. 1nm样品的Mn2+发光的特殊压力行为是因为样品的粒子尺寸比较小,另外,分布在Y型沸石中的纳米粒子的表面状况也不同于其它样品. The PL spectra for the 10, 4. 5, 3. 5, 3, 1 nm sized ZnS:Mn(2+) nanoparticles and corresponding bulk material under different pressures were investigated. The orange emission band originated from the (4)T(1)-(6)A(1) transition of Mn(2+) ions showed obvious red shift with the increasing of pressures. The pressure coefficients of Mn-related emissions measured from bulk, 10, 4. 5, 3.5 and 3 nm samples are -29.4 +/- 0.3, -30.1 +/- 0.3, -33.3 +/- 0.6, -34.6 +/- 0.8 and -39 +/- 1 meV/GPa, respectively. The absolute value of the pressure coefficient increases with the decrease of the size of particles. The size dependence of crystal field strength Dq and Racah parameter B accounts for the size behavior of the Mn-related emission in ZnS:Mn nanoparticles. The pressure behavior of Mn-related emission in the 1 nm sized sample is somewhat different from that of other nanoparticles. It may be due to smaller size of 1 nm sample and the special surface condition since ZnS nanoparticles are formed in the cavities of ziolite-Y for the 1 nm sample.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2005年第2期84-88,共5页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金资助项目(60076012和 10334040)
  • 相关文献

参考文献16

  • 1Bhargava R N, Gallagher D, Hong X, et al. Optical properties of manganese-doped nanocrystals of ZnS [J]. Phys. Rev. Lett., 1994,72(3):416-419.
  • 2Counio G, Esnouf S, Boilot J P. CdS:Mn nanocrystals in transparent xerogel matrices:synthesis and luminescence [J]. J. Phys. Chem., 1996,100(20):20021-20026.
  • 3Chen W, Sammynaiken R, Huang Y. Luminescence enhancement of ZnS:Mn nanoclusters in zeolite [J]. J. Appl. Phys., 2000,88(9):5188-5193.
  • 4Kennedy T A, Glaser E R, Klein P B, et al. Symmetry and electronic structure of the Mn impurity in ZnS nanocrystals [J]. Phys. Rev. B., 1995,52(20):R14356-R14359.
  • 5Soo Y L, Ming Z H, Huang S W, et al. Local structure around Mn luminescent centers in Mn-doped nanocrystals of ZnS [J]. Phys. Rev. B., 1994,50(11):7602-7607.
  • 6Yu I, Isobe T, Senna M. Optical properties and characteristics of ZnS nano-particles with homogeneous Mn distribution [J]. J. Phys. Chem. Solids., 1996,57(4):373-379.
  • 7Chen W, Joly A G, Zhang J Z. Up-conversion luminescence of Mn^2+ in ZnS:Mn^2+ nanoparticles [J]. Phys. Rev. B., 2001,64(4):041202-1-041202- 4.
  • 8Bol A A and Meijerink A. Long-lived Mn^2+ emission in nanocrystalline ZnS:Mn^2+ [J]. Phys. Rev. B., 1998,58(24):R15977-R16000.
  • 9Chen W, Sammynaiken R, Huang Y, et al. Crystal field, phonon coupling and emission shift of Mn^2+ in ZnS:Mn nanoparticles [J]. J. Appl. Phys., 89(2):1120-1129.
  • 10Chen W, Su F H, Li G H, et al. Temperature and pressure dependencies of the Mn^2+ and donor-acceptor emissions in ZnS:Mn^2+ nanoparticles [J]. J. Appl. Phys., 2002,92(4):1950-1955.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部