期刊文献+

爆电换能用反铁电材料 被引量:2

Antiferroelectric Ceramics Applied to Explosive Electrical Transducers
下载PDF
导出
摘要 采用爆炸冲击波作用于贮存有电极化能量的铁电体,迫使其转变成反铁电体,可释放出巨大电能量,用于一次性的高压、大功率脉冲电源。本工作研究了锆钛酸铅反铁电材料在电场、压力、温度作用下的反铁电-铁电相变性质,介绍了在爆炸冲击波作用下铁电向反铁电转变过程中电量的输出特性。 A ferroelectrics could release total electric polarization energy during it is transformed to antiferroelectrics,and that was used to high electrical power supply. The transformations between of antiferroelectric and ferroelectric phases induced with electric field, pressure, and temperature were studied for Pb(Zr,Ti)O_3 family. The characteristics of electric power under shock-wave compression were introduced in the work.
出处 《压电与声光》 CSCD 北大核心 2005年第2期156-159,共4页 Piezoelectrics & Acoustooptics
基金 总装备部武器装备预研基金资助项目(51412040103JW0802)
关键词 爆电换能 反铁电相变材料 电源工作特性 explosive-to-electrical transducers antiferroelectric materials characteristics of electrical power
  • 相关文献

参考文献12

  • 1刘高旻,谭华,袁万宗,王海晏,张毅.冲击加载下PZT-95/5陶瓷铁电-反铁电相变实验研究[J].高压物理学报,2002,16(3):231-236. 被引量:7
  • 2BERLINCOURT D. Piezoelectric and ferroelectric energy conversion [J]. IEEE Transactions on sonics and ultrasonics ,1968, 15(2):89-97.
  • 3B贾菲 著 林声和译.压电陶瓷[M].北京:科学出版社,1979..
  • 4LYSNE P C, PERCIVAL C M. Electric energy generation by shock compression of ferroelectric ceramics:Normal-mode response of PZT95/5 [J]. J Appl Phys,1975,46(4):1 519-1 525.
  • 5MOCK JR W, HOLT W H. Pulse charging of nanofarad capacitors from the shock depoling of PZT56/44and PZT95/5 ferroelectric ceramics [J]. J Appl Phys,1978,49(12):5 846-5 854.
  • 6STEINER,TAGANTSEV A K,COLLA E L,et al.Uniaxial stress dependence of the permittivity of electroceramics [J].J Europ Ceram Soc,1999,19:1 243-1246.
  • 7HAERTLING G H.Ferroelectric ceramics:history and technology [J]. J Am Ceram Soc,1999,82(4):797-818.
  • 8WANG Y L.Newferroelectric ceramics forthe generation of high energy electric pulses[J].2000IEEE Inter Sym,2000:58-61.
  • 9C基泰尔.固体物理导论[M].北京:科学出版社,1979..
  • 10冯玉军,徐卓,姚熹.改性锆钛酸铅反铁电陶瓷的热致伸缩[J].科学通报,2002,47(8):575-579. 被引量:1

二级参考文献9

  • 1钟维烈.铁电体物理学[M].北京:科学出版社,1998.430,533.
  • 2[8]Yang P, Payne D A. Thermal stability of field-forced and field-assisted antiferroelectric-ferroelectric phase transformations in Pb(Zr, Sn, Ti)O3. Appl Phys, 1992, 71(3): 1361- 1367
  • 3[1]Berlincourt D, Jaffe H, Krueger H H A, et al. Release of electric energy in PbNb(Zr,Ti,Sn)O3 by temperature and by pressure- enforced phase transitions. Appl Phys Lett, 1963, 3(5): 90-92
  • 4[2]Lysne P C, Percival C M. Electric energy generation by shock compression of ferroelectric ceramics, normal mode response of PZT95/5. J Appl Phys, 1975, 46(4): 1519-1525
  • 5[3]Uchino K, Cross L E, Newnham R E. Electrostrictive effects in antiferroelectric perovskites. J Appl Phys, 1981, 52(3): 1455-1459
  • 6[4]Xu B M, Moses P, Pai N P, et al. Charge release of lanthanum-doped lead zirconate titanate stannate antiferroelectric thin films. J Appl Lett, 1998, 72(5): 593 -595
  • 7[5]Haertling G H. Ferroelectric ceramics: history and technology. J Am Ceram Soc, 1999, 82(4): 797-818
  • 8[6]Berlincourt D, Krueger H H A, Jaffe B. Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition. J Phys Chem Solids, 1964, 25: 659 -674
  • 9[7]Lines M E , Glass A M. Principles and applications of ferroelectrics and related materials. Oxford: Oxford University Press, 1977

共引文献98

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部