期刊文献+

神经网络法在喹诺酮类化合物定量构效关系中的应用 被引量:2

Application of Neural Network Method on the Quantitive Structure-Activity Relationship of Quinolones Compounds
下载PDF
导出
摘要 目的:以神经网络法研究喹诺酮类化合物定量构效关系。方法:利用Matlab软件包构建一个3层BP神经网络,对数据集进行计算,并将结果与线性回归法的计算结果进行比较。结果:神经网络法的误差平方和为0 .3042 ,小于线性回归法,预测的相关系数为0. 86。结论:神经网络法在喹诺酮类化合物定量构效关系研究中获得了比回归法更精密的拟合结果。 OBJECTIVE:To study the quantitative structure-activity relationship of quinolones compounds by neural network(NN)method.METHODS:A3-layered BP neural network was constructed with the Matlab software package,the collected data were calculated,result of which was compared with that of the linear regression.RESULTS:Sum of square of errors for the neural network method was0.3042,which was less than that of linear regression;the predicted correlation co-efficient was0.86.CONCLUSION:The neural network method has achieved more precise fitting results than the linear re-gression in the study of the quantitative structure-activity relationship of quinolones compounds.
出处 《中国药房》 CAS CSCD 北大核心 2005年第7期497-499,共3页 China Pharmacy
基金 国家自然科学基金资助项目 (60371034)
关键词 BP神经网络 定量构效关系 MATLAB BP neural network Quantitive structure-activity relationship Matlab
  • 相关文献

参考文献6

  • 1俞庆森,朱龙观,林瑞森,蔡国强.5,7,8位取代的喹诺酮类化合物定量构效关系的量子化学研究[J].化学研究与应用,1995,7(3):301-304. 被引量:4
  • 2苏高利,邓芳萍.论基于MATLAB语言的BP神经网络的改进算法[J].科技通报,2003,19(2):130-135. 被引量:170
  • 3许东 吴铮.基于MATLAB6.x的系统分析与设计[M].西安:西安电子科技大学出版社,2002.19--24.
  • 4RichardJR MichaelWG 翁敬农(译).数据挖掘教程[M].北京:清华大学山版社,2003.201.
  • 5Fan Y, Shi LM, Kohn KW, et al .Quantitative structure antitumor activity relationships of camptothcein analogues:cluster analysis and genetic algorithm based studies[J] .J Med Chem ,2001,44(20):3 254.
  • 6Eklov T, Martensson P, Lundstrom I. Select of variables for interpreting multivariate gas sensor data[J].Analytica Chimica Acta , 1999,381(2) : 221.

二级参考文献18

  • 1Rumelhart D E, Hinton G E, Williams R J. Learninginternal repr esentatio ns by error propagation[A].Rumelhart D E James L.McClelland J L. Parallel di stributed processing: explorations in the microstructure of cognition[C], vol ume 1, Cambridge, MA:MIT Press, 1986.318~362.
  • 2Neural Network Toolbox User's Guide .The Mathworks,inc. 1999.
  • 3Fahlman S E. Faster-learning variations on back-propagation: an e mpirical study[A].Touretzky D,Hinton G,Sejnowski T. Proceedings of the 1988 C onnectionist Models Summer School[C].Carnegic Mellon University,1988,38~51.
  • 4Jacobs R A. Increased rates of convergence through learning rate adaptation[J]. Neural Networks,1988,1:295~307.
  • 5Shar S, Palmieri F. MEKA-a fast, local algorithm for training feedforwa rd neural networks[A]. Proceedings of the International Joint Conference on Ne ural Networks[C]. IEEE Press, New York, 1990.41~46.
  • 6Watrous R L. Learning algorithms for connectionist network: appli ed gradie nt methods of nonlinear optimization[A]. Proceedings of IEEE International Con ference on Neural Networks[c]. IEEE Press, New York, 1987.619~627.
  • 7Shar S,Palmieri F,Datum M.Optimal filtering algorithms f or fast l earning in feedforward neural networks[J]. Neural Networks,1992, 5(5):779~7 87.
  • 8Martin R,Heinrich B. A Direct Adaptive Method for F aster Backpropagation Learning: The RPROP Algorithrm[A]. Ruspini H. Proceedi ngs of the IEEE Interna t ional Conference on Neural Networks (ICNN)[C]. IEEE Press, New York. 1993.58 6~591.
  • 9Fletcher R,Reeves C M. Function minimization by conjugate gra dients[J]. Computer Journal ,1964,7:149~154.
  • 10Powell MJD. Restart procedures for the conjugate gradient metho d[J]. Mathematical Programming, 1977, 12: 241~254.

共引文献185

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部