期刊文献+

茶多酚对高糖时内皮细胞产生活性氧和TGF-β_1的影响 被引量:7

The effect of tea polyphenols on the production of ROS and TGF-β_1 by endothelial cells in high glucose culture media
下载PDF
导出
摘要 目的探讨高糖对内皮细胞产生活性氧和转化生长因子β1(TGF β1)的影响,以及茶多酚的干预作用。方法培养人脐静脉血管内皮细胞(ECV304),分为正常对照组、高糖组、茶多酚组和茶多酚干预组。培养0、12、36 h后,用分光光度比色法测定细胞上清液超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量,用RT PCR法测定细胞内TGF β1 mRNA的变化。结果高糖导致内皮细胞SOD活性下降和MDA含量升高,上调TGF β1 mRNA表达,其变化随时间延长更为明显。茶多酚干预可拮抗高糖时内皮细胞的上述改变。结论茶多酚有抑制高糖对内皮细胞的损伤作用。 Objective To investigate the effect of high glucose on the production of reactive ~oxygen species (ROS) and transforming growth factor β_1 (TGF-β_1) in human umbilical vein endothelial cells(ECV304),and the intervention of tea polyphenols (TPs). Methods ECV304 was cultured ~in different conditional media and divided into control group, high glucose group, TPs group and TPs treatment group. After 0,12 and 36h, the activity of SOD and the contents of MDA in supernatant were detected by spectrophotometry, meanwhile the mRNA expression of TGF-β_1 mRNA was determined by RT-PCR. Results The activity of SOD was found to be significantly decreased , while the contents of MDA and the expression of TGF-β_1 mRNA increased in high glucose. Such changes ~became more significant as time prolonged.TPs could inhibit all these changes of ECV304 in high ~glucose. Conclusion TPs may diminish the harmful effect of high glucose on the endothelial cells.
出处 《江苏医药》 CAS CSCD 北大核心 2005年第4期252-254,共3页 Jiangsu Medical Journal
基金 国家自然科学基金(30370658)
  • 相关文献

参考文献3

二级参考文献39

  • 1杨俊伟,黎磊石,张真.大黄治疗糖尿病肾病的实验研究[J].中华内分泌代谢杂志,1993,9(4):222-224. 被引量:105
  • 2杨秀伟,王多佳.四氧嘧啶性糖尿病与自由基反应[J].国外医学(内分泌学分册),1994,14(3):144-146. 被引量:18
  • 3魏林,王海燕,章友康,邹万忠,鄂洁.细胞外基质在人系膜增生性肾小球肾炎病变中的变化[J].中华病理学杂志,1994,23(1):7-9. 被引量:14
  • 4[1]Lum, H. and Roebuck, K. A. (2001). Oxidant stress and endothelial cell function. Am. J. Physiol. Cell Physiol.280, C719-741.
  • 5[2]Gorlach, A., Brandes, R. P., Nguyen, K., Amidi, M., Dehghani, E, and Busse, R. (2000). A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ. Res. 87, 26-32.
  • 6[3]Rueckschloss, U., Quinn, M. T., Holtz, J., and Morawietz, H. (2002). Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin Ⅱ type 1 receptor blockade in patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 22, 1845-1851.
  • 7[4]Kerr, S., Brosnan, J. M., McIntyre, M., Reid, J. L., Dominiczak, A. E, and Hamilton, C. A. (1999). Superoxide anion production is increased in a model of genetic hypertension. Hypertension 33, 1353-1358.
  • 8[5]Sagar, S., Kallo, I. J., Kaul, N., Ganguly, N. K., and Sharma, B. K. (1992). Oxygen free radicals in essential hypertension. Mol. Cell Biochem. 111, 103-108.
  • 9[6]Somers, M. J., Mawomatis, K., Galis, Z. S., and Harrison, D. G. (2000). Vascular superoxide production and vasomotor function in hypertension induced by deoxy-corticosterone acetate-salt. Circulation 101, 722-1728.
  • 10[7]Gonick, H. C., Ding, Y., Bondy, S. C., and Nosratola, D. (1997). Lead-induced hypertension: interplay of nitric oxide and reactive oxygen species. Hypertension 30, 1487-1492.

共引文献33

同被引文献60

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部