期刊文献+

模糊因果聚类模型在高炉焦比预测中的应用 被引量:9

Application of Fuzzy Causal Classification Model for Forecasting Coke Ratio in Blast Furnace
下载PDF
导出
摘要 通过通径分析,对高炉现场采集的数据进行处理,在给定的描述高炉系统的诸多变量中,利用最小剩余通径系数确定影响目标函数的主要变量因素·将诸因素关系处理为直接通径和间接通径,并对其进行了排序,找出了影响指定目标函数:焦比的主要直接通径和间接通径·综合直接通径和间接通径效果,确定了高炉炉顶温度、料批、矿批重、焦炭负荷和[Si]既是影响焦比的直接原因,也是其他因素对焦比作用的间接原因· By means of path analysis, the data collected in situ were processed. Among the variables given to describe blast furnace system, the main variable influencing factors on objective function were determined according to the minimum remaining path coefficient. The relation among those factors was simplified and classified into two groups, i.e., direct paths and indirect paths, then they were ranked to find out the influenced objective functions, i.e., the direct and indirect paths to coke ratio. Analyzing comprehensively the effects of the two paths, a conclusion is drawn that the furnace roof temperature, batch weight, ore weight ,coke burden and [Si] are not only the direct influencing factors, but also the indirect influencing factors on coke ratio.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第4期363-366,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(05174021).
关键词 通径分析 高炉 直接通径 间接通径 操作参数 path analysis blast furnace direct path indirect path operational parameter
  • 相关文献

参考文献9

  • 1崔党群,林德光.通径分析的矩阵算法[J].生物数学学报,1994,9(1):71-76. 被引量:38
  • 2Porter B W, Baress E R, Holte R.Concept learning and heuristic classification in weak theory domains[J]. Artificial Intelligence, 1990,45(2):229-263.
  • 3Yang M S.On a class of fuzzy classification maximum likelihood procedures[J]. Fuzzy Sets and Systems, 1993,57:365-375.
  • 4Mandal D P. Partitioning of feature space for pattern classification[J]. Pattern Recognition, 1997,30(12):1971-1990.
  • 5Tamura S, Higuchi S, Taraka K. Pattern classification based on fuzzy relations[J]. IEEE Transaction on Systems Man and Cybernetics, 1971,1(1):61-66.
  • 6Miyamoto S, Nakayama K.Similarity measures based on a fuzzy set model and application to hierarchical clustering[J]. IEEE Trans System Man Cybernet, 1986,16(3):479-482.
  • 7Kamel M, Selim S Z.New algorithms for solving the fuzzy clustering problem[J]. Pattern Recognition, 1994,27(3):421-428.
  • 8王丽娜,费如纯,董晓梅,于戈.基于范数的多维数据模糊聚类方法[J].东北大学学报(自然科学版),2003,24(5):449-452. 被引量:6
  • 9Yang M S, Ko C H. On a class of fuzzy C-numbers clustering problems for fuzzy data[J]. Fuzzy Sets and Systems, 1996,84:49-60.

二级参考文献12

  • 1Kamd M, Selim S Z. New algorithms for solving the fuzzy clustering problem [J ], Pattern Recognition, 1994,27 (3) :421 - 428.
  • 2Kamel M, Sellrn S Z. A relaxation approach to the fuzzy clustering problem[J]. Fuzzy Sets System, 1994,61 : 177 -188.
  • 3A1-Sultan K S, Selim S Z. A global, algorithm for the fuzzy clustering problem [J ]. Pattern Recognition, 1993,26 (9) :1357 - 1361.
  • 4Miyamoto S, Nakayama K. Similarity measures based on a fuzzy set model and application to hierarchical clustering[J ].IEEE Trans System Man Cybernet, 1986, 16 ( 3 ) : 479 -482.
  • 5Ng R T, Han J. Efficient and effective clustering methods for spatial data mining[A]. Proc of the VLDB Conference[ C ].Santiago:Morgan Kaufmarm, 1994.144 - 155.
  • 6Zhang T, Ramakrishnan R, Livny M. BIRCH: an efficient data clustering method for very large databases[ A]. Proc of the ACM SIGMOD Conference on Management of Data [ C ].Montreal:ACM Press, 1996. 103- 114.
  • 7Xu X, Ester M, Kriegel H, et al. A distribution-based clustering algorithm for mining in large spatial databases[ A].Proc 14th lnt Con fort Data Engineering (ICDE '98)[C].Orlando: IEEE Computer Society, 1998. 324 - 331.
  • 8Beadek J C, Hathaway R, Sabin M, et al. Convergence theory for fuzzy c-means: counterexamples and repairs[J ].IEEE Trans System Man Cybernet, 1987, 17 ( 5 ) : 873 -877.
  • 9郭平仲,数量遗传分析,1987年
  • 10高之仁,数量遗传学,1986年

共引文献42

同被引文献66

引证文献9

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部