摘要
运用边界元法研究薄板结构的动力学特性。从薄板自由振动的微分方程式出发,由相应的静态基本解建立薄板自由振动的边界控制方程,并依据边界上的约束条件,推导出薄板结构在边界和域内的动力学方程。为了避免求域内项的积分,将上述两个方程进行联立求解,快速、准确地得到薄板结构的频率方程表达式。数值计算和实验结果表明,该文方法具有良好的解析计算精度和较高的计算效率。
Dynamic characteristics of a thin assembled plate structure are analyzed by using a boundary element method (BEM). By virtue of differential equations for free vibration of thin plate, static fundamental solutions of a thin plate are adopted to establish governing boundary equations for free vibration. According to the constraint conditions on boundaries, dynamic characteristic equations of the thin assembled plate structure on the boundary and in the domain are deduced. In order to avoid the domain integral, the above two equations are simultaneously solved, and the corresponding expression of frequency equations are obtained rapidly and accurately. The comparison between numerical calculations and practical experiments shows that the established method has good precision and high efficiency.
出处
《机械强度》
EI
CAS
CSCD
北大核心
2005年第2期168-173,共6页
Journal of Mechanical Strength
基金
国家自然科学基金(50075069)
陕西省自然科学基金(2003E208)
陕西省教育厅专项科研基金(02JK112)资助项目~~
关键词
动力学
静态基本解
边界元法
薄板结构
Dynamics
Static fundamental solutions
Boundary element methods
Thin assembled plate structure