期刊文献+

铝合金超声疲劳行为研究 被引量:5

STUDY ON THE ULTRASONIC FATIGUE BEHAVIOR OF ALUMINUM ALLOYS
下载PDF
导出
摘要 研究LY10、LY12、2219、6061和AS5U3GY35五种铝合金的超声疲劳行为。获得的6条S—N曲线显示,铝合金在107~1010疲劳周次区间仍然发生疲劳断裂,N=1010时的疲劳强度显著低于N=107时的疲劳强度。断口分析表明,铝合金对表面完整性极其敏感。与黑色金属和钛合金不同,铝合金试件在极高周次疲劳中,裂纹仍然主要由表面或次表面起裂。铝合金试件的疲劳断口没有发现明显的“鱼眼”现象和黑影区。超声频率下极高的应变速率和位错移动速率增加了脆性质点开裂和沉淀相的溶解现象,引起微观组织局部失效,从而形成疲劳裂纹的萌生和扩展。 Fatigue endurance experiments have been performed on five kinds of Aluminum alloys, such as 2219, 6061, LY10, LY12 and AS5U3G-Y35, using the ultrasonic fatigue testing method at 20 kHz. The S-TV curves show that fatigue failure can occur over 107 cycles, and that fatigue endurance stress continues to decrease with increasing cycles to failure between 107 and 1010 cycles. Fatigue strength at 1010 cycles is obviously lower than that at 107 cycles. Scanning electron microscopy is used to examine the fatigue rupture section of all specimens. It was found that fatigue fracture initiation in duralumin such as 2219, 6061, LY10 and LY12 are mostly at the surface of specimen since the materials are very sensitive to the surface condition and also due to the lack of microstructural defects at the interior. There is no clear fish-eye and optically dark area (ODA) seen in the crack initiation region, different from fatigue initiation characteristics of high strength steel and Titanium alloy tested in high cycle range. High strain rate and dislocation transfer at ultrasonic frequency accelerates the crack of fragile particles and the dissolution of deposit phase in the Aluminum alloys. This results in local failure of the microstructure, and accelerates the fatigue crack initiation and growth.
作者 陶华 薛红前
出处 《机械强度》 EI CAS CSCD 北大核心 2005年第2期236-239,共4页 Journal of Mechanical Strength
基金 国家自然科学基金资助项目(59975075) 江苏省教育厅科研项目(00KJB110001)。~~
关键词 铝合金 疲劳 超声频率 极高周次 裂纹萌生与扩展 Aluminum alloy Fatigue Ultrasonic frequency Very high cycle fatigue Fatigue crack initiation
  • 相关文献

参考文献9

  • 1王清远.超高强度钢十亿周疲劳研究[J].机械强度,2002,24(1):81-83. 被引量:21
  • 2Suresh S. Fatigue of materials. Cambridge: Cambridge University Press,1998.
  • 3Murakami Y. Mechanics of fatigue in ultrasonic life regime. Proceedings of the International Conference on Fatigue in Very High Cycle Regime. Vienna:University of Agricultural Sciences, 2001. 11~22.
  • 4张宝昌.有色金属及其热处理[M].西安:西北工业大学出版社,1997..
  • 5Wu T, Ni J, Bathias C. An automatic ultrasonic fatigue testing system for studying low crack growth at room and high temperature. ASTM STP, 1995,1231: 589~607.
  • 6陶华.超声疲劳研究[J].航空学报,1998,19(2):228-231. 被引量:7
  • 7Murakami Y, Takada M, Toriyama T. Super-long life tension-compression fatigue properties of quenched and tempered 0.46% Carbon steel. Int. J.Fatigue, 1998, 16:661~667.
  • 8Nishijiama S, Kanazawa K. Stepwise S-N curve and fish-eye failure in gigacycle regime. Fatigue Fract. Eng. Mater. Struct, 1999,22:601~607.
  • 9Tao H. Development of ultrasonic fatigue, application to Titanium and Aluminum alloys at cryogenic temperatures. ( In French) (Tao H. Développement de la fatigue vibratoire, Application aux alliages de titane et d' aluminium aux témperatures cryogéniques [ These de doctorat ]. Paris: Conservatoire National des Arts et Métiers, 1996).

二级参考文献19

  • 1[1]Wang Q Y, Berard J Y, Bathias C, et al. Gigacycle fatigue of ferrous alloys. Fatigue Fract Engng Mater Struct, 1999,22(8): 667 ~ 672.
  • 2[2]Wang Q Y, Berard J Y, Bathias C, et al. High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires. Fatigue Fract Engng Mater Struct, 1999,22(8) :673 - 677.
  • 3[3]Suresh S. Fatigue of materials. 2nd edition, Cambridge, UK: Cambridge University Press, 1998.
  • 4[4]Umezawa, Nagai K. Deformation structure and subsurface fatigue crack generation in austenitic steels at low temperature. Metallurgical and Materials Transactions, 1998,29A:809 ~ 822.
  • 5[5]Umezawa, Nagai K. Subsurface creck generation in high-cycle fatigue for high strength alloys. ISIJ International, 1997, 37(12) :1 170~ 1 179.
  • 6[6]Kanazawa K, Nishijima S. Fatigue fracture of low alloy steel at ultra-highcycle region under elevated temperature condition. Zairyo/Joumal of the Society of Materials Science, Japan, 1997, 46(12): 1 396 ~ 1 401.
  • 7[7]Murakami Y, Nomoto T, Ueda T. Factors influencing the mechanism of supedong fatigue failure in steels. Fatigue Fract Engug Mater Struct, 1999,22(7) :581 ~ 590.
  • 8[8]Nishijima S, Kanazawa K. Stepwise S-N curve and fish-eve failure in gigacyele fatigue. Fatigue Fract Engng Mater Struct. 1999. 22 ( 7 ): 601 ~607.
  • 9[9]Gibert J, Piehler H R. On the nature and crystallographic orientation of subsurface cracks in high cycle fatigue of Ti-6AI4V. Metallurgical and Materials Transactions, 1993,24A: 669 ~ 680.
  • 10[10]Danninger H, Spoljaric D, Weiss B, et al. High cycle fatigue behaviour of Mo alloyed sintered steel. Z. Metallkd, 1998,89:135~ 141.

共引文献25

同被引文献40

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部