GO-空间乘积的子空间的正交紧性
Orthocompactness of Subspaces in Product of Two GO-spaces
摘要
证明了 GO-空间子空间的正交紧性和弱子正交紧性是等价的 .
We proved orthocompactness and weakly suborthocompactness are equivalent for all subspaces of product of two GO-space.
出处
《数学的实践与认识》
CSCD
北大核心
2005年第3期229-232,共4页
Mathematics in Practice and Theory
参考文献5
-
1马利文,王尚志.GO-空间乘积的子空间的广义仿紧性[J].数学的实践与认识,2003,33(3):113-118. 被引量:1
-
2Kemoto N. Orthocompact subspaces in product of two ordinals[J]. Topology Proceedings, 1997, 22: 247-263.
-
3Engelking R. General Topology[M]. Poblish Scientific Publishers warszaw, 1977.
-
4Kuratowski K, Mostowski A. Set Theory[M]. PWN-Polish Scientific Publishers, 1996.
-
5Erick Van Douwen, David J Lutzer. On the Classification of Stationary Sets[J]. in: Michigan Math J, 1979, 26:47-64.
二级参考文献11
-
1Kemoto N. Tamano K. Yajima Y. Generalized paracompactness of subspaces in products of two ordinals [J].Topology and its applications. 2000. 104: 155--168.
-
2Kemoto N. The shrinking property and the B-property in ordered spaces[J]. Fundamenta mathematicae, 1990.134: 255--261.
-
3Miwa T. Kemoto N. Linearly ordered extensions of GO-spaces[J]. Topology and its applications. 1993, 54:133--140.
-
4Kemoto N. Normality of products of GO-spaces and cardinal[J]. Topology proceedings. 1993. 18: 133--142.
-
5Engelking R. General Topology[M]. Poblish Scientific Publishers warszaw. 1977.
-
6Kuratowski K, Mostowski A. Set Theory[M]. PWN-Polish Scientific Publishers. 1996.
-
7Erdos P, Hajnal A. Mate A. Rado R. Combinatiorial Set Theory: Partition Relations for Cardinals [M].Akademiaikiado Budapest, 1984.
-
8Kunen K. Set Theory[M]. North-Holland. Amsterdam. 1980.
-
9Przymusinski T C. Products of Normal Spaces[M]. in: Handbook of Set Theoretic Topology (ed. by K. Kunen and J. E. Vaughan). Northholland. 1984: 781--826.
-
10Erick Van Douwen, Lutzer David J. On the classification of stationary Sets[J]. in: Michigan Math J. 1979, 26:47--64.
-
1马利文.有限个GO-空间乘积的遗传集体Hausdorff性(英文)[J].数学进展,2012,41(2):249-252.
-
2马利文,王尚志.GO-空间乘积的子空间仿紧性的充分必要条件[J].数学的实践与认识,2007,37(23):95-100.
-
3马利文,王尚志.GO-空间乘积的子空间[J].数学的实践与认识,2003,33(1):76-88.
-
4马利文,王尚志.GO-空间乘积的子空间的广义仿紧性[J].数学的实践与认识,2003,33(3):113-118. 被引量:1
-
5马利文.不可数多个GO-空间乘积的κ-仿紧性[J].数学的实践与认识,2009,39(22):161-165.
-
6马利文,王尚志.GO-空间乘积正规性的充要条件[J].数学学报(中文版),2004,47(1):141-148.
-
7马利文,王尚志.正则不可数基数反映GO-空间的性质[J].Journal of Mathematical Research and Exposition,2003,23(4):685-690.
-
8王铁平,贺伟.具有LOTS因子的积空间的正交紧性[J].山西师大学报(自然科学版),1995,9(2):1-4.
-
9王尚志.线性序拓扑空间中的子空间与子序空间[J].北京师范学院学报(自然科学版),1990,11(4):7-11.
-
10马利文,王尚志.两个GO-空间乘积的正规性[J].数学学报(中文版),2002,45(2):399-404.