期刊文献+

一种基于Summary的改进型BLASTN算法

BLASTN Arithmetic Based on Summary Improvement
下载PDF
导出
摘要 BLASTN是生物信息学实验中常用的局部相似性搜索软件。为此,提出了一种以BloomFilter为基础的算法,用于对BLASTN中的SeedFinding进行改进,以提高BLASTN的整体效率。该算法对原数据库文件制作Summary,在搜索过程中通过查询Summary以回避大量无效的匹配工作,并对算法的各方面进行分析,给出测试结果。 BLASTN is one of the most frequently used local alignment search tool in bioinformatics computing. This paper introduces a new algorithm, which is based on Bloom Filter algorithm, of Seed Finding in BLASTN. It improves the performance of BLASTN by building Summary for the sequence-database. According to the Summary, a lot of fruitless work can be avoided during the pattern-searching. The paper gives detail analysis on the new algorithm. Test results are also shown.
出处 《农机化研究》 北大核心 2005年第3期123-127,共5页 Journal of Agricultural Mechanization Research
关键词 生物信息学 SUMMARY 改进型BLASTN算法 BLOOM Filter算法 数据库 computer software theoretical research bioinformatics, BLAST, Bloom Filter
  • 相关文献

参考文献8

  • 1S.F Altschul, W. Gish, W. Miller, et al. Basic Local Alignment search tool[J]. Mol. Biol,1990,215:403-410.
  • 2A. Bairoch. PROSITE. a dictionary of Sites and Patterns in Proteins[J].Nucl. Acids Res, 1991,19:2241-2245.
  • 3Zheng Zhang, Alejandro A. Sch a er, Webb Mi-et al ller. Altschul. Prote in sequence similarity searches using patterns as seeds[J].Nucleid Acids Research, 1998,26(17):3986-3990.
  • 4Bin Ma, John Tromp, Ming Li. Faster and more sensitive homology search[M]. Pattern Hunter: 440-445.
  • 5Ian Korf and Warren Gish, MPBLAST:improved BLAST performance with multiplexed queries Bioinformatics, 2000,(16):1052-1053.
  • 6Weizhong Li, Frederic Pio, Krzysztof Pawlow ski, and Adam Godzik, Saturated BLAST:an aut omated multiple intermediate sequence search used to detect distant homology Bioinformatics,2000, (16):1105-1110.
  • 7Burton Bloom. Space/time trade-offs in hash coding with allowable errors[J]. CACM, 1970,13(7):422-426.
  • 8A Julich. Implementations of BLAST for parallel computers Comput[J].Appl. Biosci, 1995, (11):3-6.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部