期刊文献+

样条插值对W_∞~r(R)类函数的恢复问题

Optimal Recovery of W_∞~r(R) Classes of Functions by Spline Interpolation
下载PDF
导出
摘要 证明了在L∞尺度下,可以利用插值样条作为工具,对直线上的Sobolev类函数的导函数进行恢复,并且这种恢复方法最优. In this paper it is proved that the derivative of Sobolev-function can be reconstructed by the interpolation sampling function in the sense of L_p (p=∞) norm, and that this is the optimal method.
出处 《北方工业大学学报》 2005年第1期15-19,共5页 Journal of North China University of Technology
基金 北方工业大学校科研基金资助项目 (2 0 0 2 -2 0 0 3年度 )
关键词 最优恢复 样条插值 精确阶 精确常数 optimal recovery spline interpolation exact order exact constant
  • 相关文献

参考文献6

  • 1Li Chun. L1(R)-Optimal recovery on some differentiable function class, Approximation, Optimization and Computing: Theory and Applications (A G Law, C L Wang, editors), North Holland, Amsterdan, 1990,113 ~ 116.
  • 2Sun Yongsheng. On optimal interpolation for a differentiable function class. J. Appro. Theory. Appl. 1986,(2) :49 ~ 54.
  • 3Sun Yongsheng, Li Chun. Optimal recovery for W2(R)in L2(R). Acta. Math. Sinica. 1991, 309 ~ 323.
  • 4考涅楚克.逼近论中的样条[M].北京:科学出版社,1968.191-250.
  • 5Francqis Dubeau, Jean Savoie. Explicit error bounds for spline Interpolation on a uniform partition. Journal of approxmation theory,1995, (82): 1~14.
  • 6G G Magaril-Ⅱ' yeav. Mean dimension, Width and Optimalrecovery of Sobolev classes of functions on the line.Math. USSR.Sbornik 1993,74(2).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部