期刊文献+

基于多智能体和人工神经网络的水电厂预知维护系统的研究 被引量:13

PREDICTIVE MAINTENANCE FOR HYDROPOWER PLANT BASED ON MAS AND ANN
下载PDF
导出
摘要 随着电力市场的发展,水电厂维护的自动化是提高水电厂整体经济效益的必然要求。在 ICMMS 框架下,提出了一种水电厂预知维护系统的多智能体模型。该模型由数据采、诊断与预诊断层以及维护决策层组成,从信号采集到维护决策的所有维护活动都集成到这个模型中。利用这个模型,建立了一个水电厂预知维护系统的原型系统,并应用 ANN 技术成功地解决了原型系统动态特性的在线监测、识别和故障诊断。 As the development of the electrical power market, the maintenance automation has become an intrinsic need to increase the overall economic efficiency of hydropower plants. A Multi-Agent System (MAS) based model for the predictive maintenance system of hydropower plant within the framework of Intelligent Control-Maintenance-Management System (ICMMS) is proposed. All maintenance activities, from data collection through the recommendation of specific maintenance actions, are integrated into the system. In this model, the predictive maintenance system composed of four layers: Signal Collection, Data Processing, Diagnosis and Prognosis, and Maintenance Decision-Making. Using this model, a prototype of predictive maintenance for hydropower plant is established. Artificial Neural-Network (ANN) is successfully applied to monitor, identify and diagnosis the dynamic performance of the prototype system online.
出处 《中国电机工程学报》 EI CSCD 北大核心 2005年第6期81-87,共7页 Proceedings of the CSEE
关键词 维护系统 水电厂 人工神经网络 多智能体模型 系统动态特性 ICMMS 数据采集层 ANN技术 电力市场 经济效益 数据处理 信号采集 原型系统 在线监测 故障诊断 自动化 决策层 诊断层 Electric power engineering Intelligent control-maimtenance-managament system (ICMMS) Hydro- power plant Predictive maintenance Multi-agent system (MAS) Artificial neurad network(ANN)
  • 相关文献

参考文献16

二级参考文献25

  • 1杨纪元,黄勇.控制发电状态的动态监控系统[J].国际水力发电,1999,51(3):52-53. 被引量:1
  • 2RossTJ.模糊逻缉及其工程应用(第一版)[M].北京:电子工业出版社,2001..
  • 3.DL/T 596-1996.电力设备预防性试验规程[S].,..
  • 4[1]Chuel-Tin Chang,Kai-Nan Mah,Chii-Shiang Tsai.A simple design stratage for fault monitoring systems[J].AIChE Journal,1999,39(3):1146-1163.
  • 5[2]Kajiro Watanabe,Ichiro Matsuura,Masahiro Abe,et al.Incipient fault diagnosis of chemical processing via artificial neural networks [J].AIChE Journal,1989,35(11):1803-1812.
  • 6[3]Timo Sorsa,Heikki N,Koivo,Hannu Koivisto.Neural networks in process fault diagnosis[J].IEEE Transactions on System,Man and Cybernetics,1991,21(4):815-825.
  • 7[4]Fan J Y,Nikolaou M,White R E.An approach to fault diagnosis of chemical processes via neural networks[J].AIChE Journal,1993, 39(1):82-87.
  • 8[5]Tansel I N, Wagiman A, Tziranis A. Recognition of chatter with neural networks[J]. Int. J. Mach. Tools Manufactory, 1991, 31(4): 539-552.
  • 9[6]Chow Mo-yuen,Mangum Peter M,Yee Sui Oi.A neural network approach to real-time condition monitoring of Induction motors.IEEE Transactions on Industrial Electronics,1991,38(6):448-453.
  • 10Larry Stoddard. Make CMMS work for you[J]. Power, 1996 SEP/OCT 140(8).

共引文献361

同被引文献131

引证文献13

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部