期刊文献+

基于Si/Si_(1-x)Ge_x/Si异质结双极性晶体管的微波功率器件电流密度的数值拟合计算

A Numerical Method for Correlating Current Density of the Microwave Power Device Based on Si/Si_(1-x)Ge_x/Si
下载PDF
导出
摘要 采用异质结双台面双极型结构设计微波功率器件,选择Si作发射区和集电区,Si1-xGex合金作基区的n p n型异质结双极性晶体管,利用数学方法,通过实验数据,采用MATLAB得到了一个比线性化更精确的禁带宽度Eg在300K时关于Ge组分变化的方程。并用数值方法计算出集电区电流密度Jc随VBE变化的直流方程,与实验结果相符,并得到一个最佳的Ge组分值。 A double-mesa hetero-junction bipolar structure of n-p-n type microwave power device is used. Si is chosen for emitter and collector, and Si_(1-x)Ge_x alloy is for base. Based on some experiment data, a numerical method is used to get an equation about forbidden band E_g via the variety composition of Ge at 300 K using MATLAB, which is more precision than linearization. We also calculate the collector current density J_c via the variety of V_(BE) and the equation we got is consistent with the experiment results. Then we get an optimum Ge composition value. It has practical significance for the device design and simulation.
出处 《真空电子技术》 2005年第1期24-27,共4页 Vacuum Electronics
关键词 双极型 异质结双极性晶体管 微波功率器件 si1-xGe 数值方法 Bipolar HBT Microwave power device Si_(1-x)Ge_x Numerical-method
  • 相关文献

参考文献7

  • 1刘恩科 朱秉升.半导体物理学[M].北京:国防工业出版社,1995.219-220.
  • 2戴显英,吕懿,张鹤鸣,何林,胡永贵,胡辉勇.SiGe HBT大电流密度下的基区渡越时间模型[J].微电子学,2003,33(2):86-89. 被引量:7
  • 3蒋昌凌.SiGe半导体技术新进展[J].半导体情报,2000,37(3):26-31. 被引量:9
  • 4史进,黎晨,陈培毅,罗广礼.调制掺杂层在SiGe PMOSFET中的应用[J].微电子学,2002,32(4):249-252. 被引量:5
  • 5Zeljlca, Matutinovic-Krstelj, Venkataraman, et al. Base Resistance and Effective Band Gap Reduction in n-p-n Si/Si1-xGex/Si HBT's with Heavy Base Doping[J]. IEEE Transactions Electron Device, 1996, 43(3):457-465.
  • 6Huang C H,Abdel-Motaleb I M. A Gummel-Poon Model for Single and Double Heterojunction Bipolar Transistors[J]. IEEE Bipolar Circuits and Technology Meeting, 1989: 254-257.
  • 7Subramanian S Iyer, Patton G L, Stork J M C. Heterjunction Bipolar Transistors Using Si-Ge Alloys[J]. IEEE Transactions on Electron Device,1999, 36(10):2043-2064.

二级参考文献17

  • 1张万荣,曾峥,罗晋生.Si/SiGe/Si双异质结晶体管异质结势垒效应(HBE)研究[J].电子学报,1996,24(11):43-47. 被引量:12
  • 2Ning T H. History and future perspective of the modern silicon bipolar transistor [J]. IEEE Transon Electron Device, 2001 ; 48 (11 ) : 2485-2491.
  • 3Hong G B, Fossum J G,Ugajin M,et al. A physical SiGe-base HBT model ior circuit simulation and design [A]. IEDM [C]. 1992. 577-580.
  • 4Kwok K H. Analytical expression of base transit time for SiGe HBTs with retrograde base profiles [J].Solid-State Electronics, 1999 ;43(2) : 275-283.
  • 5People R, Bean J C. Band alignments of inherently strained Sil-x Gex substrates [J]. Appl Phys Lett,1986; 48(8) :538-540.
  • 6Patri V S, Kumar M J. Profile design consideration for minimizing base transit time in SiGe HBT's [J].IEEE Trans on Electron Device, 1998; 45 (8) : 1725-1730.
  • 7Kay L E, Monte T W. Carlo calculation of strained and unstrained electron mobilities in Si1-x Gex using an improved ionized-imparity model [J]. J Appl Phys,1991,70(3) : 1483-1488.
  • 8People R. Indirect band-gap of coherently strained GeSi bulk alloys on〈100〉 silicon substrates [J]. Physical Review B, 1985; 32 (2):1405-1408.
  • 9Lombardi. A physically based mobility model for numerical simulation of non-planar devices [J]. IEEE Trans Comp Aid Des of Circ and Syst, 1988;7(11):1164.
  • 10Armstrong G A. Strained-Si channel heterojunction P-MOSFETs [J]. Solid-State Electronics, 1998; 42 (4): 487-489.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部