期刊文献+

CHARACTERISTIC ALTERNATING-DIRECTION FINITE ELEMENT METHODS FOR NONRECTANGULAR REGIONS FOR COUPLED SYSTEM OF DYNAMICS OF FLUIDS IN POROUS MEDIA AND ITS ANALYSIS

CHARACTERISTIC ALTERNATING-DIRECTION FINITE ELEMENT METHODS FOR NONRECTANGULAR REGIONS FOR COUPLED SYSTEM OF DYNAMICS OF FLUIDS IN POROUS MEDIA AND ITS ANALYSIS
原文传递
导出
摘要 For coupled system of multilayer dynamics of fluids in porous media, thecharacteristic alternating-direction finite element methods for nonrectangular regions applicable toparallel arithmetic are put forward and two-dimensional and three-dimensional schemes are used toform a complete set. Some techniques, such as calculus of variations, isoparametric transformation,patch approximation, operator-splitting, characteristic method, negative norm estimate, energymethod, the theory of prior estimates and techniques are used. For the nonrectangular regions case,optimal order estimates in L^2 norm are derived for the error in the approximation solution. Thusthe well-known theoretical problem has been thoroughly and completely solved. These methods havebeen successfully used in multilayer oil resources migration-accumulation numerical simulation.
作者 YUANYirang
机构地区 InstituteofMathematics
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2005年第2期233-253,共21页 系统科学与复杂性学报(英文版)
基金 This research is supported by the Major State Basic Research of China, the National Foundation of China and the National Key-Problems-Tackling Program of China.
关键词 nonrectangular regions multilayer dynamics of fluids characteristic finiteelement operator-splitting and parallel arithmetic convergence 有限元方法 动力学 分析方法 非矩形区域 流体 收敛
  • 相关文献

参考文献22

  • 1R. E. Ewing, The Mathematics of Reservoir Simulation, Philadelphia, SIAM, 1983.
  • 2J. D. Bredehoeft, G. F. Pindex, Digital analysis of areal flow in multiaquifer groundwater systems: a quasi-three-dimensional model, Water Resources Research, 1970, 6(3): 883-888.
  • 3W. Don, O. F. Emil, An iterative quasi-three-dimensional finite element model for hoterogencous multiaquifer systems, Water Resources Rescearch, 1978, 14(5): 943-952.
  • 4P. Ungerer, et al., Migration of Hydrocarbon in Sedimentary Basins, Doliges (eds), Editions Technip, 1987, 414-455.
  • 5P. Ungerer, Fluid Flow, Hydrocarbon Gereration and Migration, AAPG. Bull, 1990, 74(3): 309-335.
  • 6Jr. J. Douglas, Finite difference method for two-phase incompressible flow in porous media, SIAM J. Numer. Anal., 1983, 20(4): 681-691.
  • 7T. F. Russell, Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal., 1985, 22(5): 970-1013.
  • 8R. E. Ewing, T. F. Russell and M. F. Wheeler, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics,Computer Meth. Appl. Mech. Eng.(R. E. Ewing, ed.), 1984, 47: 73-92.
  • 9Jr. J. Douglas, T. F. Russell, Numerical method for convection-dimenated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 1982, 19(5): 871-885.
  • 10Jr. J. Douglas, Y. R. Yuan, Numerical simulation of immiscible flow in porous media based on combining the method of characteristics with mixed finite element procedures, in Numerical Simulation in Oil Recovery(M. F. Wheeler Editor) Springer-Verlag, 119-131.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部