期刊文献+

Quantum Secret Sharing Based on Multi-Particle Entanglement 被引量:5

Quantum Secret Sharing Based on Multi-Particle Entanglement
原文传递
导出
摘要 We propose a class of Quantum Secret Sharing (QSS) scheme based onmulti-particle entanglement. The eavesdropping analysis shows that the scheme is secure. Itsefficiency is 100% in principle. That is, one multi-particle entanglement can be used to share a bitof classical key among the parties. As a result, it is resource saving. The protocol can also beadjusted to split a classical secret message directly. The implementation of it is relativelyapplicable. We propose a class of Quantum Secret Sharing (QSS) scheme based onmulti-particle entanglement. The eavesdropping analysis shows that the scheme is secure. Itsefficiency is 100% in principle. That is, one multi-particle entanglement can be used to share a bitof classical key among the parties. As a result, it is resource saving. The protocol can also beadjusted to split a classical secret message directly. The implementation of it is relativelyapplicable.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2005年第1期15-19,共5页 中国邮电高校学报(英文版)
基金 This work is supported by the National Natural Science Foundation of China (No.60373059) the National Laboratory for Modern Communications Science Foundationof China (No. 51436020103DZ4001) National Research Foundation for the Doctoral Program of Hig
关键词 quantum secret sharing secret splitting GHZ states multi-particleentanglement quantum secret sharing secret splitting GHZ states multi-particleentanglement
  • 相关文献

参考文献20

  • 1SCHNEIER B.Applied cryptography[M].New York(NY,USA):Wiley,1996.70.
  • 2BLAKELY G.Safeguarding cryptographic keys[A].Proc AFIPS,Vol 48[C].Montvale(NJ,USA),1979.New York(NY,USA):AFIPS Press,1979.313.
  • 3SHAMIR A.How to share a secret[J].Commun ACM,1979,22(11):612-613.
  • 4TITTEL W,ZBINDEN H,GISIN N.Experimental demonstration of quantum secret sharing[J].Phys Rev A,2001,63:042301.
  • 5BAGHERINEZHAD S,KARIMIPOUR V.Quantum secret sharing based on reusable GHZ states as secure carriers[J].Phys Rev A,2003,67:044302.
  • 6HILLERY M,BUZEK V,BERTHIAUME A.Quantum secret sharing[J].Phys Rev A,1999,59(3):1829-1834.
  • 7KARLSSON A,KOASHI M,IMOTO M.Quantum entanglement for secret sharing and secret splitting[J].Phys Rev A,1999,59(1):162-168.
  • 8GOTTESMAN D,On the theory of quantum secret sharing[J].Phys Rev A,2000,61:042311.
  • 9NASCIMENTO A C A,MULLER-QUADE J,IMAI H.Improving quantum secret-sharing schemes[J].Phys Rev A,2001,64:042311.
  • 10CLEVE R,GOTTESMAN D,LO H K.How to share a quantum secret[J].Phys Rev Lett,1999,83(3):648-651.

二级参考文献16

  • 1JAN C A, VAN DER LUBBE. Information theory[M]. Cambridge UK: Cambridge University Press, 1997,334-337.
  • 2VOLOVICH I V, VOLOVICH YA I. On classical and quantum cryptography[EB/OL]. ArXiv:quant-ph/0108133,2001-08-29.
  • 3SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring [A]. Proc of the 35th Annual Symp on Foundations of Computer Science [C]. New Mexico: IEEE Computer Society Press. 1994, 124-134.
  • 4SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5) : 1484-1509.
  • 5BENNETT C H, BRASSARD G. Quantum cryptography: public key distribution and coin tossing[A]. Proc IEEE Int Conf Computers, Systems and Signal Processing[C]. Bangalore(India): 1984, 175-179.
  • 6BENNETT C H. Quantum cryptography using any two non-orthogonal states[J]. Phys Rev Lett, 1992, 68: 3121-3124.
  • 7DAGMAR BRU. Optimal eavesdropping in quantum cryptography with six states[J]. Phy Rev Lett, 1998, 32 (14) : 3018-3021.
  • 8EKERT A. Quantum cryptography based on Bell's theorem[J]. Phys Rev Lett, 1991, 67: 661-663.
  • 9BENNETT C H, BESSETTE F, BRASSARD G, et al. Experimental quantum cryptography[J]. Journal Cryptology, 1992, 5:3-28.
  • 10HUGHES R J, et al. Practical free-space quantum cryptography [A]. Quantum Computing and Quantum Communications (QCQC'98) [C]. 1998, 200-213.

共引文献4

同被引文献61

  • 1朱洪波,杨伯君.制备EPR纠缠态的一种简易方法[J].北京邮电大学学报,2004,27(4):55-58. 被引量:1
  • 2GAOFei,WENQiao-yan,ZHUFu-chen.Quantum Key Distribution Based on Entangled States and Non-Orthogonal States[J].The Journal of China Universities of Posts and Telecommunications,2004,11(4):33-36. 被引量:3
  • 3秦素娟,刘太琳,温巧燕.基于纠缠交换和局域操作的量子秘密共享[J].北京邮电大学学报,2005,28(4):74-77. 被引量:8
  • 4佟鑫,温巧燕,朱甫臣.基于GHZ态纠缠交换的量子秘密共享[J].北京邮电大学学报,2007,30(1):44-48. 被引量:9
  • 5Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(12):575-579.
  • 6Korolkova N, Leuehs G, Loudon R, et al. Polarization squeezing and continuous-variable polarization entanglement[J]. Phys RevA, 2002, 65(5): 052306.
  • 7Bowen P W, Treps N, Schnabel R, et al. Continuous variable polarization entanglement, experiment and analysis[J]. J Opt B: Quantum Semiclass, 2003, 5(4):S467.
  • 8Lai Y. Quantum theory of soliton propagation: a unified approach based on linearization approximation[J]. J Opt Soc Am B, 1993, 10(3):475-483.
  • 9G Brassard,et al.An update on quantum cryptography[A].Advances in Cryptology-CRYPT′84[C].Berlin:Springer Verlag,1984,475-480.
  • 10Charles H Bennett.Quantum cryptography using any two non-orthogonal states[J].Physical Review Letters,1992,68:3121-3124.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部