期刊文献+

一阶脉冲泛函微分方程周期边值问题 被引量:5

Periodic Boundary Value Problems for Functional Differential Equations with Impulses
下载PDF
导出
摘要 考虑脉冲泛函微分方程周期边值问题.利用一个新的比较结果,构造了一个近似解序列,并且获得了一个解的存在性结果. This paper is concerned with the periodic boundary value problem for functional differential equations with impulses. By developing a comparison result, the authors are able to construct a sequence of approximate solutions and to give an existence result.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2005年第2期237-244,共8页 Acta Mathematica Scientia
基金 国家自然科学基金 (1 0 0 71 0 1 8) 教育部优秀青年教师基金资助
关键词 比较结果 脉冲方程 周期边值问题 单调迭代方法 Comparison result Impulsive equation Periodic boundary value problem Monotone iterative technique.
  • 相关文献

参考文献8

  • 1Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Singapore: World Scientific, 1989.
  • 2Bainov D D, Simeonov P S. Impulsive Differential Equations: Periodic Solution and Applications. Harlow: Longman Scientific and Technical, 1993.
  • 3Franco D, Liz E, Nieto J J, Rogovchenko Y V. A contribution to the study of functional differential equations with impulses. Math Nachr, 2000, 218(1): 49-60.
  • 4Liu Xinzhi. Periodic boundary value problem for impulsive systems containing Hammerstein type integrals. Dynamic Systems and Appl, 1997, 6(3): 517-528.
  • 5Nieto J J. Basic theory for nonresonance impulsive periodic problem of first order. J Math Anal Appl, 1997, 205(2): 423-433.
  • 6Liu X, Guo D. Initial value problems for first order impulsive integro-differential equations in Banach spaces. Communications on Applied Nonlinear Analysis, 1995, 2(1): 65-83.
  • 7Liu X. Nonlinear boundary value problems for first order impulsive integro-differential equations. Appl Anal, 1990, 36(1): 119-130.
  • 8Hristova S G, Bainov D D. Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential-difference equations. J Math Anal Appl, 1996, 197(1): 1-13.

同被引文献19

  • 1孙金丽.Banach空间中二阶非线性脉冲积分微分方程的周期边值问题的解[J].山东大学学报(理学版),2001,36(2):154-160. 被引量:3
  • 2王良龙,王志成.MIXED MONOTONE ITERATIVE TECHNIQUES FOR SEMILINEAR EVOLUTION EQUATIONS IN BANACH SPACES[J].Annals of Differential Equations,2004,20(3):283-301. 被引量:5
  • 3[3]Wang Lianglong,Wang Zhicheng.Monotone Iterative Techniques for Parameterized BVPs of Abstract Semilinear Evolutions Equations[ J ].Computers and Mathematics with Applications,2003,46 (8/9):1229-1243.
  • 4HEESTERBEEK J A P,ROBERT M G.Threshold quantities for helminth infections[J].Math Biol,1995,33:415-423.
  • 5Lakshmikantham V,Bainov D D,Simeonov P P.Theory of impulsive differential equations[M].Singapore:World Scientific,1989.
  • 6Samoilenko A M,Perestyuk N A.Impulsive Multiple differential equations[M].Singapore:World Scientific,1995.
  • 7Yongxiang Li,Zhe Liu.Monotone iterative technique for addressing impulsive integro-differential equations in Banach spaces[J].Nonlinear Anal,2007,66(1):83-92.
  • 8Lijing Chen,Jitao Sun.Nolinear boundary problem of first order impulsive integro-differential equations[J].Journal of Computational and Applied Mathematics,2007,202(2):392-401.
  • 9Lijing Chen,Jitao Sun.Nolinear boundary value problem for first order impulsive integro-differential equations of mixed type[J].Journal of Mathematical Analysis and Applications,2007,325(2):830-842.
  • 10Erbe L H,Liu Xinzhi.Quasi-solution of nonlinear impulsive equations in abstract cones[J].Appl Anal,1989,34:231-250.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部