期刊文献+

2维Otsu自适应阈值的快速算法 被引量:120

Fast Algorithm for Two-dimensional Otsu Adaptive Threshold Algorithm
下载PDF
导出
摘要 Otsu自适应阈值法作为图像阈值分割的经典算法,在图像处理领域得到了广泛的应用,在其基础上发展起来的2维Otsu阈值法却因为计算时间长而制约了其应用。针对2维Otsu自适应阈值方法计算复杂度高的缺点,通过改变2维直方图上的区域划分,将2维阈值转换为1维阈值,从而提高了2维自适应阈值算法的计算速度。实验结果表明,该算法的计算时间远远小于原始2维Otsu算法,分割效果和原始算法基本一致。 As a classical image segmentation method, Otsu adaptive threshold algorithm has applied widely in image processing. The application of the two-dimensional Otsu threshold algorithm based on the Otsu threshold algorithm has been restricted for the long-paying computation. This paper gives a fast algorithm for two-dimensional Otsu adaptive threshold algorithm that overcomes the disadvantage of high computational complexity. The fast algorithm changes the two-dimensional threshold to one-dimensional threshold by using new area partition method, and enhances the computational speed of the two-dimensional Otsu algorithm. The experimental result has demonstrated that the computational time of the fast method is far less than that of the source two-dimensional one.
作者 郝颖明 朱枫
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2005年第4期484-488,共5页 Journal of Image and Graphics
基金 国家"863"计划项目(2002AA4010014A)
  • 相关文献

参考文献7

二级参考文献33

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2[1]Pal N R,Pal S K.A Review on Image Segmentation Techniques[J].Pattern Recognition,1993,26(9):1277-1294.
  • 3[2]Bhanu B,Lee S,Ming J.Alaptive Image Segmentation Using a Genetic Algorithm[J].IEEE Trans.on System,Man,and Cybernetics,1995,5(12):1543-1565.
  • 4[3]Doyle W.Operation Useful for Similarity-Invariant Pattern Recognition[J].J.Asssoc.Comput.Mach.,1962,9:259-267.
  • 5[4]Lee S,Chung S.A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation[J].Computer Vision,Graphics,and Image Processing,1990,52:171-190.
  • 6[5]Ostu N A.Threshold Selection Method from Gray-Level Histograms[J].IEEE Trans.on System,Man,and Cybernetics,1979,9(1):62-66.
  • 7[6]Tsai W H.Moment-Preserving Thresholding:A New Approach[J].Computer Vision,Graphics,and Image Processing,1985,29:377-393.
  • 8[7]Kittler J,Illingworth J.Minimum Error Thresholding[J].Pattern Recognition,1986,19:41-47.
  • 9[8]Cho S,Haralick R,Yi S.Improvement of Kittler and Illingworth's Minimum Error Thresholding[J].Pattern Recognition,1989,22:609-617.
  • 10[9]Rosenfeld A,De La Torre P.Histgram Concavity Analysis as an Aid in Threshold Selection[J].IEEE Trans.on Systems,Man and Cybernetics,1983,SMC-13:231-235.

共引文献700

同被引文献828

引证文献120

二级引证文献906

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部