摘要
The nonlinear dynamic behaviors of flexible rotor system with hydrodynamicbearing supports are analyzed. The shaft is modeled by using the finite element method that takesthe effect of inertia and shear into consideration. According to the nonlinearity of thehydrodynamic journal bearing-flexible rotor system, a modified modal synthesis technique withfree-interface is represented to reduce degrees-of-freedom of model of the flexible rotor system.According to physical character of oil film, variational constrain approach is introduced tocontinuously revise the variational form of Reynolds equation at every step of dynamic integrationand iteration. Fluid lubrication problem with Reynolds boundary is solved by the isoparametricfinite element method without the increasing of computing efforts. Nonlinear oil film forces andtheir Jacobians are simultaneously calculated and their compatible accuracy is obtained. Theperiodic motions are obtained by using the Poincare -Newton-Floquet (PNF) method. A method,combining the predictor-corrector mechanism to the PNF method, is presented to calculate thebifurcation point of periodic motions to be subject to change of system parameters. The localstability and bifurcation behaviors of periodic motions are obtained by Floquet theory. The chaoticmotions of the bearing-rotor system are investigated by power spectrum. The numerical examples showthat the scheme of this study saves computing efforts but also is of good precision.
The nonlinear dynamic behaviors of flexible rotor system with hydrodynamicbearing supports are analyzed. The shaft is modeled by using the finite element method that takesthe effect of inertia and shear into consideration. According to the nonlinearity of thehydrodynamic journal bearing-flexible rotor system, a modified modal synthesis technique withfree-interface is represented to reduce degrees-of-freedom of model of the flexible rotor system.According to physical character of oil film, variational constrain approach is introduced tocontinuously revise the variational form of Reynolds equation at every step of dynamic integrationand iteration. Fluid lubrication problem with Reynolds boundary is solved by the isoparametricfinite element method without the increasing of computing efforts. Nonlinear oil film forces andtheir Jacobians are simultaneously calculated and their compatible accuracy is obtained. Theperiodic motions are obtained by using the Poincare -Newton-Floquet (PNF) method. A method,combining the predictor-corrector mechanism to the PNF method, is presented to calculate thebifurcation point of periodic motions to be subject to change of system parameters. The localstability and bifurcation behaviors of periodic motions are obtained by Floquet theory. The chaoticmotions of the bearing-rotor system are investigated by power spectrum. The numerical examples showthat the scheme of this study saves computing efforts but also is of good precision.
基金
This project is supported by National Natural Science Foundation of China (No.50275116) National 863 of China(No.2002AA414060, No.2002AA-503020).