摘要
The effects of the binder composition, the powder loading, the thermal properties of feedstocks, and the injection molding parameters on the compact shape retention for metal injection molding 17-4PH stainless steel were investigated. The high-density polyethylene is more effective than ethylene vinyl acetate as a second component of the wax-based binder to retain compact shape due to its higher pyrolytic temperature and less heat of fusion. The compact distortion decreases with increasing the powder loading, molding pressure and molding temperature. There exists an optimal process combination including the powder loading of 68%, molding pressure of 120MPa and molding temperature of 150℃. Under this process condition, the percentage of distorted compacts is the lowest.
The effects of the binder composition, the powder loading, the thermal properties of feedstocks, and the injection molding parameters on the compact shape retention for metal injection molding 17-4PH stainless steel were investigated. The high-density polyethylene is more effective than ethylene vinyl acetate as a second component of the wax-based binder to retain compact shape due to its higher pyrolytic temperature and less heat of fusion. The compact distortion decreases with increasing the powder loading, molding pressure and molding temperature. There exists an optimal process combination including the powder loading of 68%, molding pressure of 120MPa and molding temperature of 150℃. Under this process condition, the percentage of distorted compacts is the lowest.
基金
Project(2001AA337050) supported by the National High Technology Research and Development Program of China
ject(81041) supported by the Huo Yindong Education Foundation
project(200135) supported by the Chinese Excellent Dissertation