期刊文献+

陨石中林伍德石的形成条件对寻找地球产状林伍德石的启示 被引量:2

The formation conditions of ringwoodite in meteorites: Clues to finding terrestrial ringwoodite.
下载PDF
导出
摘要 橄榄石高压多形林伍德石被认为是地幔过渡带的主要矿物。天然产状林伍德石主要在发生强烈冲击变质的球粒陨石冲击脉体中出现。目前还没有在地球岩石中发现林伍德石的报告。陨石冲击脉体的温度压力历史和矿物组合特征研究表明,林伍德石形成后,高压下淬火是使林伍德石不发生退变作用的重要条件。陨石中有利于林伍德石保存的淬火时间仅为数秒到十多秒。在地球上任何地质事件中,均难以实现在如此短的时间内使位于地幔过渡带的林伍德石被带往地球表层。寻找地球产状的林伍德石,关键是要在岩石和矿物中存在有利于林伍德石保存的条件,特别是当这些岩石和矿物仍处于高温的环境时。 Ringwoodite, a high-pressure polymorph of olivine, is an important mineral predominating in the transition zone of the Earth mantle. Natural ringwoodite has been found only in the shock-produced veins of chondritic meteorites. No terrestrial ringwoodite has yet ever been found. The pressure and temperature history of shock veins in meteorites and their mineral assemblages indicate that quenching of shock veins under pressure plays a key role in preserving ringwoodite from a reverse transformation to olivine. Time duration of up to ten seconds was estimated to be necessary for the quenching of ringwoodite. No geological process on the Earth could bring ringwoodite from the transition zone of the mantle to the surface of the Earth in such a short time period. To look for terrestrial ringwoodite, one should find those rocks or minerals available for keeping ringwoodite under high pressure, especially when the rocks and minerals are still under high temperature.
作者 陈鸣
出处 《地学前缘》 EI CAS CSCD 北大核心 2005年第1期23-27,共5页 Earth Science Frontiers
基金 国家自然科学基金资助项目(49825132) 中国科学院知识创新工程项目(KJCX2 SW NO3 KZCX3 SW 123) 中国科学院百人计划项目
关键词 林伍德石 橄榄石 冲击脉体 陨石 地幔 ringwoodite olivine meteorite shock vein mantle
  • 相关文献

参考文献18

  • 1XU S, OKAY A I, JI S, et al. Diamond from metamorphic rocks and its implication for tectonic setting[J]. Science, 1992, 256: 80-82.
  • 2WANG X, LIOU J G, MAO H K. Coesite-bearing eclogites from the Dabie Mountains in central China[J]. Geology, 1989, 17: 1085-1088.
  • 3DOBRZHINESKAYA L, GREEN H W, WANG S. Alpe Arami: A peridotite massif from depths more than 300 km[J]. Science, 1996, 272: 1841-1845.
  • 4YE K, CONG B, YE D. The possible subduction of continental material to depths greater than 200 km[J]. Nature, 2000, 407: 734-736.
  • 5COLLERSON K D, HAPUGODA S, KAMBER B S, et al. Majorite-bearing xenoliths from Malaita, Southwest Pacific[J]. Science, 2000, 288: 1215-1223.
  • 6BINNS R A, DAVIS R J, REED S J B. Ringwoodite, natural (Mg,Fe)2SiO4 spinel in the Tenham meteorite[J]. Nature, 1969, 221: 943-944.
  • 7COLEMANN L C. Ringwoodite and majorite in the Catherwood meteorite[J].Canadian Mineralogist,1977,15:97-101.
  • 8CHEN M, SHARP T G, EL GORESY A, et al. The majorite-pyrope solid solution + magnesio-wustite: Constraints on the history of shock veins in chondrites[J]. Science, 1996, 271: 1570-1573.
  • 9KIMURA M, CHEN M, YOSHIDA T, et al. Back transformation of high-pressure phases in a shock vein of an H-chondrite during atmospheric passage: Implications for the survival of the high-pressure phases after decompression[J]. Earth and Planetary Science Letters, 2003, 217: 141-150.
  • 10STOFFLER D, KEIL K, SCOTT E R D. Shock metamorphism of ordinary chondrites[J]. Geochim Cosmochim Acta, 1991, 55: 3845-3867.

同被引文献34

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部