期刊文献+

电离辐射对离体培养O-2A祖细胞分化的影响 被引量:1

Differentiation of Oligodendrocyte/type-2-astrocyte Progenitor Cells after Irradiation in vitro
下载PDF
导出
摘要 背景与目的:电离辐射引起中枢神经系统脱髓鞘病变的主要靶细胞之一为O-2A祖细胞,其在体外可定向诱导分化为少突胶质细胞和Ⅱ型星形胶质细胞。本文旨在探索电离辐射对O-2A祖细胞分化的影响,为研究早期放射性脑损伤发病机理的研究提供实验基础。方法:利用新生SD大鼠脑混合胶质细胞原代培养、定向诱导分化和免疫细胞化学等技术,观察不同辐射剂量对O-2A祖细胞分化的影响,检测其数量、形态和分化比例的情况。结果:倒置显微镜下计数对照组O-2A祖细胞个数为24.80±3.70,照射2 Gy、10 Gy、30 Gy组分别为4.40±0.89、1.60±0.55、1.20±0.45,与对照组相比照射后O-2A祖细胞总数明显减少(P<0.001); 10 Gy、30 Gy组中诱导分化的少突胶质细胞和Ⅱ型星形胶质细胞的突起变粗变短,但各组间细胞分化比例未见明显变化(P>0.05)。结论:电离辐射对O-2A祖细胞的分化有较大影响,影响程度与辐射剂量存在量效关系。 BACKGROUND & OBJECTIVE: Oligodendrocyte/type-2-astrocyte progenitor cells (O-2A progenitors) is one of the target cells in radiation induced central nervous system injury. O-2A can be induced to differentiate into oligodendrocytes and type-2-astrocytes in vitro. In this study, we observed the effects of radiation on the differentiation of O-2A and provide basic data on the pathogenesis of brain radiation injury in early stage. METHODS: Differentiation of O-2A was observed after applying radiation in different dose to P0-P1 Sprague-Dawley Rat's mixed glial cells culture, and through induced differentiation as well as immunocytochemistry. After radiation, the quantities of O-2A, morphological changes and the ratio of the differentiation were measured. RESULTS: The number of O-2A was 24.80±3.70 in the placebo group. In 2Gy, 10Gy, 30 Gy group, the number was 4.40±0.89, 1.60±0.55, 1.20±0.45, respectively. After radiation, the quantities of O-2A reduced significantly (P< 0.001). Reduced short and thicker neuritis of oligodendrocytes and type-2-astrocytes were found in 10 Cy and 30 Cy group. There were no significant changes of the ratio of the differentiated oligodendrocytes and type-2-astrocytes among the groups (P >0.05). CONCLUSION: Dose dependent radiation may have determinate effect on the differentiation of O-2A.
出处 《中国神经肿瘤杂志》 2005年第1期39-42,共4页 Chinese Journal of Neuro-Oncology
基金 国家自然科学基金资助项目(No.30170287)江苏省卫生厅重大科研课题资助项目(No.K200406)
  • 相关文献

参考文献2

二级参考文献24

  • 1Hong HJ, Chiang CS, Campbell IL, et al. Induction of acute phase gene expression by brain radiation. Int J Radiat Oncol Biol Phys, 1995,33 :619-626.
  • 2Belka C, Budach W, Kortmann RD, et al. Radiation induced CNS toxicity-molecular and cellular mechanisms. Br J Cancer, 2001,85: 1233-1239.
  • 3Tsao MN,Li YQ,et al.Upregulation of vascular endothelial growth factor is associated with radiation-induced blood—spinal cord barrier breakdown.J Neuropathol Exp Neurol,1999,58:1051-1060.
  • 4Ting Y, Wu SL, Liang JC, et al. Time-dependent astroglial changes after gamma knife radiosurgery in the rat forebmin. Neurosurgery, 2000,47:407-416.
  • 5Fike JR, Gobbel GT, Chou D, et al. Cellular proliferation and infiltration following interstitial irradiation of normal dog brain is altered by an inhibitor of polyamine synthesis. Int J Radiat Oncol Biol Phys, 1995,32:1035-1045.
  • 6Maniatis T. A ubiquitin ligase complex essential for the NF-κB. C, ene Dev, 1999,13:505-510.
  • 7Chiang CS, McBride WH, Wither HR. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother Oneol, 1993,29 : 60-69.
  • 8Sohaib AK, Hofman FM, Schneider JH, et al. Cytokine expression in radiation-induced delayed cerebral injury. Neurosurgery, 1994, 35: 822-830.
  • 9Nakagawa M, Bellinzona M, Seihan TM, et al. Microglial responses after focal radialion-induced injury are affected by alpha-difluoromethylornithine. Int J Radiat Oncol Biol Phys,1996,36:113-123.
  • 10Blakemore WF, Gilson JM, Crang AJ. Transplanted glial cells migrate over a greater distance and remyelinate demyelinated lesions more rapidly than endogenous remyelinating cells. J Neurosci Res, 2000, 61 : 288-294.

共引文献25

同被引文献9

  • 1Wong CS, Van der Kogel AJ. Mechanisms of radiation injury to the central nervous system: implication for neuroprotection. Mol Interv, 2004, 4(2): 273-284.
  • 2Kim JH, Brown SL, Jenrwo KA, et al. Mechanisms of radiation- induced brain toxicity and implications for future clinical trials. J Neurooncol, 2008, 87 (2) : 279-286.
  • 3Zhao W, Chuang EY, Mishra M, et al. Distincts of ionizing radiation on in vivo murine kidney and brain normal tissue gene expression. Clin Cancer Res, 2006, 12(10) : 3823-3830.
  • 4Mahmoud2Ahmed AS, Atkinson S, Wong CS. Early gene expression profile in mouse brain after exposure to ionizing radiation. Radiat Res, 2006, 165(2): 142-154.
  • 5Yin E, Nelson DO, Coleman MA, et al. Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. Int J Radiat Biol, 2003, 79(5) : 759-775.
  • 6Achanta P, Thompsona KJ, Fuss M, et al. Gene expression changes in the rodent hippocampus following whole brain irradiation. Neurosci Lett, 2007, 418(2): 143-148.
  • 7Tian Y,Shi Z, Yang S, et al. Changes in myelin basic protein and demyelination in the rat brain within 3 months of single 2-, 10-, or 30-Gy whole-brain radiation treatments. J Neurosurg, 2008, 109(5): 881-888.
  • 8Nordal RA, Wong CS. Intercellular adhesion molecule-1 and blood-spinal cord barrier disruption in central nervous system radiation injury. J Neuropath Exp Neurol, 2004, 63 (3) : 474-483.
  • 9Yuan H, Gaber MW, Mccolgan T, et al. Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier: modulation with anti-ICAM-1 antibodies. Brain Res, 2003, 969(1) : 59-69.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部