摘要
在热模拟实验的基础上,分析了变形条件及微合金元素Nb( 0 . 0 1 8%~0 . 0 56% )、V( 0 . 0 1 %~0 .0 2 % )、Ti( 0 . 0 1 %~0 .0 2 % )对0 . 0 6%~0 . 0 8%C实验钢的热变形行为的影响。在Sellas Tartat方程的基础上,建立了应力 应变曲线数学模型:动态回复模型σ(e) =σ0 + (σp-σ0 ) [1 -exp( -3 .2 3ε/εs) ] 0 .5 ,式中:σp 峰值应力,σ0 初始应力,ε变形应变,σs 加工硬化与回复进入稳态的临界应变;动态再结晶模型σ=σ(e) -(σp-σss) { 1-exp[-2. 3 63 (ε-εc)εc0 .342 5 ) 2 ] } ,式中:σss 动态再结晶进入稳态时的应力,εc 动态再结晶临界应变。利用该模型对0 .0 7%C~0 .0 1 8%Nb实验钢工业轧制时轧制压力进行了预测,其结果与实测值吻合良好。
Based on the hot simulation test, the effect of deformation condition and microalloying element 0.018-0.056Nb, 0.01-0.02V and 0.01-0.02Ti on behavior of hot deformation of 0.06-0.08C test steel has been analyzed. And based on the Sellas-Tartat equation, the mathematic models to calculate the stress- strain curves have been established, that are dynamic recover model - σ (e) = σ 0+(σ p-σ 0)[1-exp(-3.23 ε/ε s)] 0.5 , where σ p- peak stress, σ 0- stress at onset of plasticstrain, ε- strain, ε s- strain to onset of steady state by work hardening and recovering, and dynamic recrystallization model - σ = σ (e) -(σ p-σ ss ){1-exp[-2.363(ε-ε c)ε c 0.342 5 ) 2]}, where σ ss -stress to onset of steady state by dynamic recrystallization, ε c- strainfor onset of dynamic recrystallization. The predicted results to rolling force by the models conform with that of measured value of 0.07C-0.018Nb test steel during commercial rolling.
出处
《特殊钢》
北大核心
2005年第3期15-18,共4页
Special Steel