The parametric orbits and the form invariance of three-body in one-dimension
被引量:2
参考文献17
1 Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese).
2 Zhao Y Y and Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) (in Chinese).
3 Mel F X 2003 Acta Phys. Sin. 52 1048 (in Chinese).
4 Fang J H 2002 Chin. Phys. 11 313.
5 Luo S K 2003 Acta Phys. Sin. 52 2941 (in Chinese).
6 Wang S Y and Mei F X 2002 Chin. Phys. 11 5.
7 Qiao Y F, Zhao S H and Li R J 2004 Chin. Phys. 13 292.
8 Fu J L, Chen L Q and Bai J H 2003 Chin. Phys. 12 695.
9 Zhang Y 2004 Acta Phys. Sin. 53 331 (in Chinese).
10 Lou Z M 2004 Acta Phys. Sin. 53 2046 (in Chinese).
同被引文献48
1 乔永芬,赵淑红,李仁杰.准坐标下完整力学系统的非Noether守恒量——Hojman定理的推广[J] .物理学报,2004,53(7):2035-2039. 被引量:6
2 李红,方建会.Lie symmetry and Mei symmetry of a rotational relativistic system in phase space[J] .Chinese Physics B,2004,13(8):1187-1190. 被引量:3
3 张毅,范存新,葛伟宽.Birkhoff系统的一类新型守恒量[J] .物理学报,2004,53(11):3644-3647. 被引量:15
4 赵跃宇,梅凤翔.关于力学系统的对称性与不变量[J] .力学进展,1993,23(3):360-372. 被引量:81
5 郭永新,罗绍凯,梅凤翔.非完整约束系统几何动力学研究进展:Lagrange理论及其它[J] .力学进展,2004,34(4):477-492. 被引量:27
6 方建会,张鹏玉.相空间中变质量力学系统的Hojman守恒量[J] .物理学报,2004,53(12):4041-4044. 被引量:8
7 方建会,彭勇,廖永潘.关于Lagrange系统和Hamilton系统的Mei对称性[J] .物理学报,2005,54(2):496-499. 被引量:12
8 方建会,廖永潘,彭勇.相空间中力学系统的两类Mei对称性及守恒量[J] .物理学报,2005,54(2):500-503. 被引量:10
9 Emmy Noether,梅凤翔.不变变分问题 (此文献给F.Klein,为博士研究50周年纪念日作)[J] .力学进展,2005,35(1):116-124. 被引量:1
10 赵跃宇.非保守力学系统的Lie对称性和守恒量[J] .力学学报,1994,26(3):380-384. 被引量:77
二级引证文献27
1 李彦敏,梅凤翔.广义Birkhoff系统的循环积分及降阶法[J] .北京理工大学学报,2010,30(5):505-507. 被引量:4
2 丁光涛.Noether-Birkhoff动力学逆问题[J] .中国科学:物理学、力学、天文学,2010,40(12):1514-1520. 被引量:7
3 丁光涛.从运动方程构造Lagrange函数的直接方法[J] .动力学与控制学报,2010,8(4):305-310. 被引量:12
4 丁光涛.关于对称性理论中梅凤翔问题[J] .力学与实践,2011,33(1):80-81. 被引量:1
5 丁光涛.对变分原理中时间微商类型的分析[J] .安徽师范大学学报(自然科学版),2011,34(5):429-431. 被引量:4
6 丁光涛.状态空间与Birkhoff力学[J] .安徽师范大学学报(自然科学版),2012,35(5):415-418. 被引量:1
7 梅凤翔,吴惠彬.分析动力学三个问题的研究进展[J] .动力学与控制学报,2014,12(1):1-8. 被引量:2
8 翟相华,张毅.基于微分变分原理研究相空间中非完整系统的守恒律[J] .商丘师范学院学报,2014,30(3):42-47.
9 张毅.基于Herglotz型微分变分原理研究相空间中非保守系统的守恒律[J] .力学季刊,2018,39(4):681-688. 被引量:2
10 张毅.关于Mei对称性与Noether对称性的关系——以Lagrange系统为例[J] .力学与实践,2016,38(2):169-171.
1 朱如曾,向程.STUDIES OF MELNIKOV METHOD AND TRANSVERSAL HOMOCLINIC ORBITS IN THE CIRCULAR PLANAR RESTRICTED THREE-BODY PROBLEM[J] .Applied Mathematics and Mechanics(English Edition),1996,17(12):1177-1187.
2 Shi Qing ZHANG Department of Mathematics,Chongqing University,Chongqing 400044,P.R.China E-mail:abc98@cqu.edu.cnQing ZHOU Department of Mathematics,East China Normal University,Shanghai 200062,P.R.China E-mail:qzhou@math.ecnu.edu.cn.A Minimizing Property of Lagrangian Solutions[J] .Acta Mathematica Sinica,English Series,2001,17(3):497-500. 被引量:3
3 王继锁,孟祥国,冯健,高云峰.Establishing path integral in the entangled state representation for Hamiltonians in quantum optics[J] .Chinese Physics B,2007,16(1):23-31.
4 Yuqian GUO Daizhan CHENG.EXTENDED CASIMIR APPROACH TO CONTROLLED HAMILTONIAN SYSTEMS[J] .Journal of Systems Science & Complexity,2006,19(2):211-218. 被引量:1
5 The Mixed Rescaling Model and Nuclear Drell-Yan Process[J] .Chinese journal of nuclear physics,1996(2):16-19.
6 LUO Lin,FAN En-Gui.Hamiltonian Systems and Darboux Transformation Associated with a 3 × 3 Matrix Spectral Problem[J] .Communications in Theoretical Physics,2007,48(2X):205-210. 被引量:1
7 Fei-min HUANG,Xing LI.Convergence to the Rarefaction Wave for a Model of Radiating Gas in One-dimension[J] .Acta Mathematicae Applicatae Sinica,2016,32(2):239-256. 被引量:2
8 Gao Huotao,Lu Shu,Xu Penggen,Wu Zhengxian.The EM Scattering from One-Dimensionally Lossy Fractal Surfaces[J] .Wuhan University Journal of Natural Sciences,1998,3(3):78-82.
9 Xiao-ning Lin,Hai-yin Gao.Multiple Nonnegative Solutions for Singular Positone Boundary Value Problems to the Delay One-dimension p-Laplacian[J] .Acta Mathematicae Applicatae Sinica,2005,21(3):405-414.
10 REN Wen-Xiu,Alatancang.Bi-Hamiltonian Structure of a Third-Order Nonlinear Evolution Equation on Plane Curve Motions[J] .Communications in Theoretical Physics,2007,48(2X):211-214.
;