Localized excitations with and without propagating properties in (2+1)-dimensions obtained by a mapping approach
被引量:3
参考文献25
1 Lorenz F W 1963 J. Atmos. Sci. 20 130.
2 Camassa R and Holm D D 1993 Phys. Rev. Lett. 71 1661.
3 Rosenau P and Hyman J 1993 Phys. Rev. Lett. 70 564.
4 Zheng C L and Zhang J F 2002 Acta Phys. Sin. 51 2426(in Chinese).
5 Boiti M, Leon J, Martina L and Pempinelli F 1988 Phys.Lett. A 102 432.
6 Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601.
7 Tang X Y and Lou S Y 2003 J. Math. Phys. 44 4000.
8 Zheng C L and Chen L Q 2004 J. Phys. Soc. Jpn. 73 293.
9 Zheng C L and Sheng Z M 2003 Inter. J. Mod. Phys. B 17 4407.
10 Zheng C L, Zhang J F and Sheng Z M 2003 Chin. Phys.Lett. 20 331.
同被引文献26
1 FANGJian-Ping,ZHENGChun-Long,CHENLi-Qun.Semifolded Localized Structures in Three-Dimensional Soliton Systems[J] .Communications in Theoretical Physics,2004,42(2X):175-179. 被引量:1
2 徐昌智,张解放.(2+1)维非线性Burgers方程变量分离解和新型孤波结构[J] .物理学报,2004,53(8):2407-2412. 被引量:8
3 智红燕,王琪,张鸿庆.(2+1) 维Broer-Kau-Kupershmidt方程一系列新的精确解[J] .物理学报,2005,54(3):1002-1008. 被引量:13
4 方建平,郑春龙.New exact excitations and soliton fission and fusion for the (2+1)-dimensional Broer-Kaup-Kupershmidt system[J] .Chinese Physics B,2005,14(4):669-675. 被引量:10
5 曾昕,张鸿庆.(2+1)维Boussinesq方程的Backlund变换与精确解[J] .物理学报,2005,54(4):1476-1480. 被引量:37
6 田贵辰,刘希强.含外力项的广义变系数KdV方程的精确解[J] .量子电子学报,2005,22(3):339-343. 被引量:26
7 卢殿臣,洪宝剑,田立新.带强迫项变系数组合KdV方程的显式精确解[J] .物理学报,2006,55(11):5617-5622. 被引量:54
8 毛杰健,杨建荣.A new method of new exact solutions and solitary wave-like solutions for the generalized variable coefficients Kadomtsev-Petviashvili equation[J] .Chinese Physics B,2006,15(12):2804-2808. 被引量:3
9 Kadomtsev B B, Petviashvili V I. On the stability of solitary waves in weakly dispersive media[J]. Soy Phys Dokl, 1970, 15(1):539-541.
10 套格图桑,斯仁道尔吉.辅助方程构造带强迫项变系数组合KdV方程的精确解[J] .物理学报,2008,57(3):1295-1300. 被引量:15
二级引证文献7
1 王艳红,成军祥.微扰KdV方程的精确解[J] .河南理工大学学报(自然科学版),2010,29(4):551-554. 被引量:3
2 吴薇.Sharma-Tass-Olver方程的对称、约化及群不变解[J] .聊城大学学报(自然科学版),2010,23(4):28-31. 被引量:2
3 王岗伟,张颖元.变系数KdV-Burgers方程的精确解[J] .聊城大学学报(自然科学版),2011,24(2):9-12. 被引量:10
4 杨娟,冯庆江.应用改进的试探函数法求非线性数学物理方程精确解[J] .量子电子学报,2016,33(4):444-450. 被引量:11
5 杨娟,尹海峰,冯庆江.应用辅助方程法求Zakharov方程的精确解[J] .应用数学,2017,30(2):322-329. 被引量:1
6 李英杰,智红燕.变系数薛定谔方程的Painlevé分析及解析解[J] .量子电子学报,2017,34(6):682-690. 被引量:1
7 杨娟,冯庆江.广义(2+1)维Boussinesq方程的孤立波解[J] .数学的实践与认识,2017,47(22):230-237. 被引量:3
1 SHEN Shou-Feng.Localized Excitations in a Sixth-Order (1+1)-Dimensional Nonlinear Evolution Equation[J] .Communications in Theoretical Physics,2005,44(6X):961-963.
2 雷燕,马松华,方建平.Folded localized excitations in the (2+1)-dimensional modified dispersive water-wave system[J] .Chinese Physics B,2013,22(1):138-142. 被引量:7
3 马红彩,葛东杰,于耀东.New periodic wave solutions, localized excitations and their interaction for (2+1)-dimensional Burgers equation[J] .Chinese Physics B,2008,17(12):4344-4353. 被引量:2
4 ZHENG Chun-Long,YE Jian-Feng,XU Yuan.Evolutional Properties of Localized Excitations for Generalized Broer-Kaup System in (2+1) Dimensions[J] .Communications in Theoretical Physics,2006,46(3X):461-466.
5 夏亚荣,辛祥鹏,张顺利.Residual symmetry, interaction solutions, and conservation laws of the(2+1)-dimensional dispersive long-wave system[J] .Chinese Physics B,2017,26(3):207-214. 被引量:9
6 Min-ying TANG & Wen-ling ZHANG School of Mathematical Sciences and Center for Nonlinear Science Studies, South China University of Technology, Guangzhou 510640, China ( Department of Mathematics and Physics, National Natural Science Foundation of China, Beijing 100085, China.Four types of bounded wave solutions of CH-■ equation[J] .Science China Mathematics,2007,50(1):132-152. 被引量:8
7 FANGJian-Ping,ZHENGChun-Long,LIUQing.Nonpropagating Solitons in (2+1)-Dimensional Dispersive Long-Water Wave System[J] .Communications in Theoretical Physics,2005,43(2):245-250. 被引量:5
8 ZHENGChun-Long.Interactions Among Peakons, Dromions, and Compactons for a (2+1)-Dimensional Soliton System[J] .Communications in Theoretical Physics,2004,41(4):513-520.
9 ZHENGChun-Long.Variable Separation Solutions of Generalized Broer-Kaup System via a Projective Method[J] .Communications in Theoretical Physics,2005,43(6):1061-1067.
10 MA Song-Hua LI Jiang-Bo FANG Jian-Ping College of Mathematics and Physics,Lishui University,Lishui 323000,China.Peakon Excitations and Fractal Dromions for General (2+1)-Dimensional Korteweg de Vries System[J] .Communications in Theoretical Physics,2007(12):1063-1066.
;