期刊文献+

不具Lipschitz条件的Browder变分不等式解的Ishikawa迭代算法 被引量:2

The Ishikawa Iterative Algorithms to Solutions of Browder Variational Inequalities without Lipschitz Continuous Mappings
下载PDF
导出
摘要 在Hilbert空间H中,得到映象T:H→H不具Lipschitz连续性条件的Browder变分不等式〈Tu-f,y-u〉 φ(u)-φ(y),  y∈H的带有误差的Ishikawa迭代算法;结果改进和推广了文献中某些已知的结果. In Hilbert space H, we obtain the Ishikawa iterative algorithms with errors to solutions of Browder variational inequalities 〈Tu-f,y-u〉φ(u)-φ(y), y∈Hfor the mapping T:H→H without Lipschitz continuous condition. The results of this paper improve and generalize some known results in the literature.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期57-60,共4页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅自然科学基金资助项目
关键词 HILBERT空间 强单调 反单调 Ishikawa迭代算法 Browder变分不等式 Hilbert space Strong monotone Antimonotone Ishikawa iterative algorithm Browder variational inequality
  • 相关文献

参考文献2

二级参考文献1

共引文献2

同被引文献32

  • 1李林珂,丁协平.解变分不等式的超梯度Mann迭代算法[J].四川师范大学学报(自然科学版),2005,28(5):514-517. 被引量:4
  • 2Baiocchi C,Capelo A.Variational and Quasivariational Inequalities,Applications to Free Boundary Problems[M].New York:John Wiley and Sons,1984.
  • 3Giannessi F,Maugeri A.Variational Inequalities and Network Equilibrium Problems[M].New York:Plenum Press,1995.
  • 4Glowinski R,Lions J,Tremolieres R.Numericial Analysis of Variational Inequalities[M].Amsterdam:North-Holland,1981.
  • 5Harker P T,Pang J S.Finite-dimensional variational inequalities and nonlinear comple-mentarity problems[J].Math Program,1990,48:161-220.
  • 6Kinderlehrer D,Stampacchia G.An Introduction to Variational Inequalities and Their Applications[M].New York:Academic Press,1980.
  • 7Noor M A,Noor K I,Rassias T M.Invitation to variational inequalities[C]//Analysis,Geometry and Group:A Riemann Legacy Volume.Florida:Hadronic Press,1993:373-448.
  • 8Noor M A.A new iterative method for monotone mixed inequalities[J].Math Comput Modelling,1997,26(7):29-34.
  • 9Noor M A.General algorithm for variational inequalities[J].Math Japonica,1993,38(1):47-53.
  • 10Noor M A.Wiener-hopf equations and variational inequalities[J].J Optim Theory Appl,1993,79(1):197-206.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部