期刊文献+

波分复用波长路由节点的阻塞特性分析 被引量:5

Blocking Probability Analysis of Wavelength Division Multiplexing Wavelength Routing Nodes
原文传递
导出
摘要 利用概率统计理论的方法,从节点层次上定量分析了节点规模、复用波长数目以及波长转换对波分复用(WDM)波长路由网络中波长路由节点的影响。提出了基于概率统计的节点阻塞模型。数值结果突出表明波长转换能力越强的全光节点,其性能越优。为了提高网络资源的使用效率并增强全光网络的灵活性,必须实现全光网络中的虚波长路由波长转换器。通过数值计算找到了阻塞性能和代价的折中,研究中发现配置较低波长转换能力波长转换器的波长路由节点将会具备更强的性价比优势,当前在构建光通信系统时使用弱波长转换能力的光节点更可行。 Based on the theory of probability, a blocking probability model is proposed to investigate the blocking performance of the individual node in wavelength division multiplexing (WDM) wavelength routed all-optical networks. The blocking performance is relevant to the number of wavelengths multiplexed in each fiber link and the number of access fiber link ports, with (full or limited) wavelength conversion. The numerical results show that the wavelength routing node equipped with the higher conversion degree of wavelength converters has the better performance than the node equipped with lower ones. To enhance service efficiency of wavelength resource and to make the all-optical networks more flexible, virtual wavelength routing, wavelength converters in all-optical networks are needed. Trade-off between the performance and the cost is found in this paper. Then to guarantee blocking performance is precondition, wavelength routing nodes deployed with the low conversion degree of the wavelength converters are able to reach the definite blocking performance. The realistic and cost-effective way to construct nodes system in WDM routing networks is to use wavelength converters with weak capability.
出处 《中国激光》 EI CAS CSCD 北大核心 2005年第4期544-548,共5页 Chinese Journal of Lasers
基金 武汉市科技攻关计划(2002100513004)资助项目。
关键词 光通信 概率论 光交换 波长转换 波分复用 Optical communication equipment Optical switches Probability Routers Wavelength division multiplexing
  • 相关文献

参考文献12

  • 1赵同刚,任建华,李蔚,赵荣华.半导体激光器实现波长转换的理论模型分析[J].光学学报,2003,23(9):1071-1075. 被引量:17
  • 2P. Green. Progress in optical networking [J]. IEEE Communications Magazine, 2001, 39(1) :54-61.
  • 3X. D. Qin, Y. Y. Yang. Optical crossconnect architectures for wavelength-routed WDM networks [J]. Optical Networks Magazine, 2003, (July/August):50-62.
  • 4R. A. Barry, P. A. Humblet. Models of blocking probability in all-optical networks with and without wavelength changers[J]. IEEE Journal on Selected Areas in Communications,1996, 14(5) :858-867.
  • 5M. Kovacevic, A. Acampora. Benefits of wavelength translation in all-optical clear channel networks [J]. IEEE Journal on Selected Areas in Communications, 1996, 14 ( 5 ) :868-879.
  • 6B. Ramamurthy, B. Mukherjee. Wavelength conversion in WDM networking [J].IEEE Journal on Selected Areas in Communications, 1998, 16(7) :1061-1073.
  • 7A. Birman, Computing approximate blocking probabilities for a class of all-optical networks [J3. IEEE Journal on Selected Areas in Communications, 1996, 14(5):852-857.
  • 8S. Subramaniam, M. Azizoglu, A. K. Somani. All-optical networks with sparse wavelength conversion [J]. IEEE/ACM Transaction on Networking, 1996, 4(4) ; 544-557.
  • 9X. D. Qin, Y. Y. Yang. Blocking probability in WDM switching networks with limited wavelength conversion [C].Proceedings Eleventh International Conference on Computer Communications and Networks, 2002, 14-16(10) : 454-459.
  • 10H. Harai, M. Murata, H. Miyahara. Heuristic algorithm for allocation of wavelength convertible nodes and routing coordination in all-optical networks [J]. J. Lightwave Technol. , 1999, 17(4):535-545.

二级参考文献16

  • 1Takahashi Y, Neogi A, Kawaguchi H. Nolinear optical gains in polarization switching of semiconductor lasers.lOth Intern. Conf. on Indium Phosphide and Related Materials. Tsukuba, Japan, 11-15 May 1998, Thp-59 :745-748.
  • 2Cartledge J C, Srinivasan R C. Extraction of DFB laser rate equation parameters for system simulation purposes.J. Light'wave Technol , 1997, 15(5) :852-860.
  • 3Agrawal G P. Gain nonlinearities in semiconductor lasers: theory and application to distributed feedbacklasers. IEEE J. Quant. Electron , 1987, QE-23(6):860-868.
  • 4Yamada M. Transverse and longitudinal mode control in semiconductor injection lasers. IEEE J. Quant.Electron , 1983, QE-19(9):1365-1380.
  • 5Yasaka H, Ishii H, Takahata K et al.. Broad-range wavelength conversion of 10 Gbit/s signal using a superstructure grating distributed Bragg reflector laser.J. Electron. Lett , 1994, 30(2):133-134.
  • 6Durhuus T, Pcderesen R J S, Mikkelsen Bet al . Optical wavelength conversion over 18 nm at 2. 5 Gb/s by DBR-Laser. J. IEEE Photon. Technol. Lett , 1993, 5(1):86-88.
  • 7Yoo S J B. Wavelength conversion technologies for WDM network applications. IEEE J. Lightwave Technol ,1996, 14(6) :955-966.
  • 8Willner A E, Shieh W. Optical spectral and power parameters for all-optical wavelength shifting single stage,fanout, and cascadability. IEEE J. Lightwave Technol ,1995, 13(5):771-781.
  • 9Joergensen C, Danielsen S, Stubkjaer K et al.. All-optical avelength conversion at hit rates above 10 Gh/s using semiconductor optical amplifier. IEEE J. Select Topics in Quantum Electron , 1997, 3(5):1168-1179.
  • 10Durhuus T, Joergensen C, Mikkelsen Bet al.. All optical wavelength conversion by SOA's in Mach-Zehnder configuration. IEEE Photon. Technol. Lett , 1994, 6(1) :53-55.

共引文献16

同被引文献32

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部